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INTRODUCTION

ATP synthase (F0F1) is a multisubunit, membrane-associ-
ated protein complex that catalyzes the phosphorylation of
ADP to ATP at the expense of a proton motive force gener-
ated by an electron transport chain in energy-transducing
membranes (303, 387). In some organisms, it also works in the
reverse direction by hydrolyzing ATP and generating an elec-
trochemical proton gradient across a membrane to support

locomotion or nutrient uptake. ATP synthase is present in all
living organisms and is located in the membranes of mitochon-
dria, bacteria, and chloroplast thylakoids as well as on the
surfaces of various cell types, including endothelial cells (269,
270), keratinocytes (58), and adipocytes (206).

ATP synthase is an exceptionally complicated protein com-
plex. It is divided into two sectors, a soluble globular F1 cata-
lytic sector and a membrane-bound F0 proton-translocating
sector (Fig. 1) (304, 305). Even the simplest form of ATP
synthase, found in nonphotosynthetic eubacteria, contains
eight different subunit types, while the chloroplast and photo-
synthetic bacterial ATP synthase each consists of nine different
subunit types (42, 331). The ATP synthase from mitochondria
is much more complicated and, excluding regulators, is re-
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ported to date to consist of 15 and 17 different subunit types in
animals and yeasts (or fungi), respectively (305, 413).

ATP synthase is associated directly or indirectly with various
human diseases. One form of Leigh syndrome, a neurodegen-
erative disease which causes a neuromuscular disorder with a
50% survival rate to 3 years of age, is the consequence of a
severe impairment of ATP synthesis. This is due to a mutation
in subunit a of ATP synthase (99). The neuropathy, ataxia,
retinitis pigmentosa syndrome and the familial bilateral striatal
necrosis are also caused by the dysfunction of ATP synthase
due to mutations within the same subunit (93, 396). In Batten’s
disease, a lysosomal storage disease also known as neuronal
ceroid lipofuscinoses or Kufs’ disease, the subunit c of ATP
synthase has been found as a predominant storage protein
(298, 299). In addition, in Alzheimer’s disease or presenile
dementia, which is a progressive and degenerative disease
that attacks the brain, a deficiency of ATP synthase has been
observed in mitochondria (357). A low expression of the
ATP synthase � subunit and the cytosolic accumulation of
the � subunit are detected in Alzheimer’s disease, and the
intraneuronal cytosolic accumulation of the � subunit is
implicated in the neurodegenerative process (73, 208, 367).
Moreover, the ATP synthase on the cell surface of endothe-
lial cells has been reported to have an important role in the
angiogenesis process required for tumor growth (269–271,
422). Additionally, the ATP synthase F6 subunit circulating
in the blood has been recognized to be involved in the
increase of blood pressure (293, 294). Finally, the � subunit
of ATP synthase has been identified as a target protein for
innate antitumor cytotoxicity mediated by natural killer and
interleukin 2-activated killer cells (91).

ATP synthase has also been demonstrated and suggested

as a good molecular target for drugs in the treatment of
various diseases and the regulation of energy metabolism
(16, 38, 72, 193, 202, 367). One of the drugs developed for
the treatment of tuberculosis, R207910, was shown to be
active against a number of drug-resistant strains of Myco-
bacterium tuberculosis and to eradicate M. tuberculosis in-
fection rapidly and effectively (15, 313, 340). The drug has
been revealed to block the synthesis of ATP by targeting
subunit c of ATP synthase. Another drug, Bz-423, which was
developed for therapy of the autoimmune disorder systemic
lupus erythematosus, kills pathogenic lymphocytes selec-
tively by inducing apoptosis in lymphoid cells (41).
Significantly, Bz-423 has been found to inhibit the mito-
chondrial ATP synthase by binding to the subunit known as
oligomycin sensitivity-conferring protein (OSCP) (193). In
addition, the inhibition of nonmitochondrial ATP synthase
resulted in the inhibition of cytosolic lipid droplet accumu-
lation, suggesting ATP synthase as a molecular target for
antiobesity drugs (16). Finally, the inhibition of ATP syn-
thase has been suggested for an antiangiogenic therapeutic
strategy to block tumor angiogenesis (17, 59, 269–271, 422).
Here, the reaction of ATP synthase inhibitors with the non-
mitochondrial ATP synthase of endothelial cells has been
shown to inhibit markedly the migration and proliferation
of endothelial cells with little effect on intracellular ATP
(17).

The aim of this review is to provide insight and encourage-
ment into the development of new ATP synthase-directed
agents. We have meticulously categorized most of the natural
and synthetic inhibitors of ATP synthase reported to date in
accordance with physical/chemical characteristics of the inhib-
itors and have summarized the current knowledge of the
modes of action of these inhibitors. The information provided
in this review should prove to be an invaluable resource, not
only for obtaining information about the interactions of known
effectors, primarily inhibitors of ATP synthase, but for gener-
ating new ideas for the development of numerous additional
ATP synthase-directed agents that can be used (i) in the treat-
ment of human and animal diseases, (ii) in agriculture as pes-
ticides or herbicides, and (iii) in the developing field of nano-
technology to understand the mechanics of nanomotor
function.

PEPTIDE INHIBITORS

�-Helical Basic Peptide Inhibitors

The �-helical basic peptide inhibitors bind to F1 and inhibit
ATPase activity (Table 1). Inhibitors in this group include
�-helical structures containing basic residues, which appear to
be crucial for their inhibitory activities. The �-helical basic
peptide inhibitors include the bacterial/chloroplast ε subunit,
melittin, the presequence of yeast cytochrome oxidase subunit
IV (WT and its synthetic derivatives), and possibly the inhib-
itor protein (IF1) (Fig. 2A).

The bacterial/chloroplast ε subunit, composed of �120 to
140 amino acid residues, is an endogenous inhibitory subunit in
F1, and inhibits ATPase activities of isolated and membrane-
bound bacterial F1 (BF1) and chloroplast F1 (CF1) (198, 284,
332, 372, 386). The inhibition is reversible and noncompetitive

FIG. 1. Current view of the structure of mitochondrial ATP syn-
thase from metazoans. F1 is composed of �, �, �, �, and ε subunits, and
F0 consists of a, b, c, d, e, f, g, A6L, and OSCP. IF1 is a regulatory
protein. The coordinates of the subunits used in the structural model
are 1E79 for the �, �, �, �, and ε subunits; 1ABV for the N-terminal
domain of OSCP; 2CLY for F6, d, and the hydrophilic part of the b
subunit; 1GMJ for IF1; and 1B9U for the transmembrane part of the
b subunit. The ac10 subcomplex was modeled using the coordinates of
the a and c subunits from 1C17, and the other subunits in the model
were constructed manually using Quanta. No positions are assigned to
the factor B and the e subunit. Here and where indicated in the other
figure legends, the coordinates of protein structures were obtained
from the PDB.
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with substrates (372, 386). It has no inhibitory effect on ATP
synthesis and is required in the chloroplast ATP synthase for
ATP synthesis in the light (289, 389, 402). The inhibition of
F1-ATPase by the ε subunit is controlled by the electrochem-
ical gradient and ADP/ATP balance (389), and the C-terminal
�-helical domain is responsible for its inhibitory activity
(168, 212, 289). At high proton motive forces and low ATP
concentrations, the C-terminal �-helical domain of the ε
subunit performs large conformational changes from the
hairpin conformation to a “lifted-up” extended conforma-
tion, shifting its position �70 Å to interact with the �3�3

hexagon ring (389, 402). In the “lifted-up” extended confor-
mation, the C-terminal helix lies close to the �-DELSEED
motif of the � subunit, and the direct electrostatic interac-
tion between the �-DELSEED motif and the basic residues
in the C-terminal domain of the ε subunit leads to the
inhibition of ATP hydrolysis (168).

IF1 is a natural regulatory peptide of 56 to 87 residues found
in mitochondria (Fig. 2A). It binds to F1 with a 1:1 stoichio-
metric ratio and inhibits the ATP hydrolysis of mitochondrial
ATP synthase without affecting ATP synthesis. The inhibition
is reversible and noncompetitive, and the binding of IF1 to F1

requires the presence of ATP (178, 228, 229, 409). IF1 is more
potent against the whole membrane-bound ATP synthase

(F0F1-ATPase) complex than isolated F1 (144, 409, 411). IF1

inhibits the ATPase activity of mitochondrial ATP synthase
and has no ATPase inhibitory effect against BF1 (143). The
yeast IF1 can cross-react with animal F1, whereas the potato
IF1 shows no inhibitory effect against animal F1 (60, 319). IF1

proteins from animals are considerably (18 to 31 residues)
longer than those from plants and fungi (176). In a study of
truncated bovine IF1 for inhibitory activity, the minimal inhib-
itory sequence was shown to localize within residues 14 to 47
(411). The adjoining residues 10 to 13 and 48 to 56 are con-
sidered to play a stabilizing role. In the crystal structure of F1

with IF1, the N-terminal domain of IF1 is bound at the inter-
face between �DP and �DP subunits and also has contacts with
�TP386, �E355, and the � subunit (61). It has been suggested
that the inhibitory mode of action of IF1 could be similar to
that of the bacterial ε subunit (260, 402). IF1 is considered
to play its inhibitory role by impeding the closure of the
�DP-�DP catalytic interface to prevent the hydrolysis of
bound ATP (61, 141). Cross-linking and intrinsic phospho-
rescence decay studies implicate IF1 as being functionally
associated with the mitochondrial ε subunit (260, 373). Both
proteins are in close proximity in the crystal structure of the
F1-IF1 complex (141).

Melittin, which is a 26-residue peptide known as the princi-

TABLE 1. �-Helical basic peptide inhibitors

Name Amino acid sequence (species)a Source Inhibitory potency (reference)

Bacterial/chloroplast
ε subunit

MTLNLCVLTPNRSIWNSEVKEIILST
NSGQIGVLPNHAPTATAVDIGILR
IRLNDQWLTLALMGGFARIGNNE
ITILVNDAERGSDIDPQEAQQTLE
IAEANLRKAEGKRQKIEANLALR
RARTRVEASNTISS (spinach)

Natural regulatory
peptide

1–3 ε mol/molc CF1(-ε)b (spinach Ca2�-
ATPase) (332); �0.73 �g/�gc (spinach
CF1-Ca2�-ATPase) (284); �15 nMc

(EF1-ATPase) (372); 100 nMc (EF1-
ATPase, rotation rate of 60-nm beads)
(282); 10 nMd (EF1-ATPase) (386);
2.1 nMe (Thermosynecoccus ascicula
F1, ��� complex) (212); 94%
inhibition at 10 ε mol/mol CF1(-ε)
(spinach Ca2�-ATPase) (289)

IF1 MAVTALAARTWLGVWGVRTMQA
RGFGSDQSENVDRGAGSIREAGG
AFGKREQAEEERYFRAQSREQL
AALKKHHEEEIVHHKKEIERLQK
EIERHKQKIKMLKHDD (human)

Natural regulatory
peptide

0.25 �Mc (bovine heart MF1-ATPase)
(143); 1.2 �Mc at 21°C and 0.84 �M at
37°C (bovine heart MF1-ATPase)
(446); 300 �g/mg proteinc (T.
pyriformis SMP-ATPase) (404); 34 �g/
mg proteinc (C. asciculate SMP-
ATPase) (439); 0.24 �Md (rat liver
MF1-ATPase) (229)

Melittin GIGAVLKVLTTGLPALISWIKRKRQ
Q-NH2

Apis mellifera (honey bee) 5 �Mc (bovine heart MF1-ATPase) (52);
12 �Mc (bovine heart MF1-ATPase)
(143)

WTf MLSLRQSIRFFKPATRTLCSSRYL
L-NH2

Subunit IV of yeast
cytochrome c oxidase

16 �Mc (bovine heart MF1-ATPase) (52)

�11,12 MLSLRQSIRFPATRTLCSSRYLL-NH2 Synthetic 29 �Mc (bovine heart MF1-ATPase) (52)
Syn-A2 MLSRLSLRLLSRLSLRLLSRYLL-NH2 Synthetic 42 nMc (bovine heart MF1-ATPase)

(52); 290 nMc (bovine heart MF1-
ATPase) (143); 1.7 �Mc (Bacillus PS3
F1-ATPase) (143)

Syn-C MLSSLLRLRSLSLLRLRLSRYLL-NH2 Synthetic 58 nMc (bovine heart MF1-ATPase)
(52); 160 nM (bovine heart MF1-
ATPase) (143); 1.6 �Mc (Bacillus PS3
F1-ATPase) (143)

a Where a species is indicated, sequences vary with species.
b CF1 without ε subunit.
c I50.
d Ki.
e Kd.
f Leader sequence of subunit IV of yeast cytochrome c oxidase.
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pal active component of bee venom and which has a powerful
anti-inflammatory effect, inhibits the ATPase activity of F1 (52,
143). The 25-residue presequence of yeast cytochrome oxidase
subunit IV (WT) and its synthetic derivatives, Syn-A2,
Syn-C, and �11,12, also inhibit ATP hydrolysis by F1 (52,
143). Melittin, WT, Syn-A2, and Syn-C (and possibly
�11,12) form basic and amphiphilic �-helical structures
(191, 337, 338, 393). Melittin, Syn-A2, and Syn-C have been
suggested to bind to F1 at the same site as IF1 (143), and WT
and �11,12, which are derivatives of Syn-A2 and Syn-C, are
considered to also play similar inhibitory roles. Syn-A2 and
Syn-C are very effective inhibitors among amphiphilic pep-
tide inhibitors, showing 50% inhibitory (I50) values of about
40 to 50 nM for inhibition of bovine F1-ATPase activity (52).

Syn-A2 inhibits the ATPase activity of bovine F1 noncom-
petitively in a parabolic manner, whereas Syn-C exhibits
mixed inhibition and melittin shows noncompetitive hyper-
bolic inhibition (52).

Angiostatin and Enterostatin

Angiostatin is a 57-kDa N-terminal fragment of a larger
protein, plasmin, which is also a fragment of plasminogen.
Angiostatin has a triangular structure with three to five con-
tiguous kringle domains, and it acts as a natural angiogenesis
inhibitor (Fig. 2B) (1). It binds to the � and � subunits of ATP
synthase and inhibits its ATP hydrolysis (269, 270). In an ex-
periment with bovine F1 and human angiostatin, the angiosta-

FIG. 2. Structures of peptide inhibitors. (A) �-Helical basic peptide inhibitors. The coordinates of the inhibitors are 1BSN for the bacterial/
chloroplast ε subunit, 1GMJ for IF1, and 2MLT for melittin. (B) Angiostatin and enterostatin. The coordinate for the structure is 1KI0.
(C) Tentoxin and tentoxin analogs. (D) Leucinostatins and efrapeptins.
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tin bound strongly to F1 and completely inhibited ATPase
activity (269). Angiostatin was also found to inhibit ATP gen-
eration by the nonmitochondrial ATP synthase located on en-
dothelial cells that comprise the human umbilical vein, with 1
�M angiostatin inhibiting about 81% of the ATP synthesis
activity (270). However, no ATP synthesis by plasma mem-
brane ATP synthase was reported in human vascular endothe-
lial cells (325), and the inhibition of ATP synthesis of nonmi-
tochondrial ATP synthase by ATP synthase-specific inhibitors
is still controversial.

Enterostatin is a pentapeptide released from procolipase
during dietary fat digestion (Fig. 2B). Enterostatin binds to the
ATP synthase � subunit and inhibits ATP synthesis (38, 39,
301). Binding of enterostatin to the mitochondrial ATP syn-
thase in insulinoma cells leads to an �31% decrease of ATP
production accompanied by an increase in thermogenesis and
oxygen consumption (38). The binding of enterostatin to F1 is
inhibited by �-casomorphin, a peptide derived from the diges-
tion of �-casein in milk (38, 39, 301).

Tentoxin and Its Derivatives

The properties and inhibitory potencies of tentoxin and its
analogs are summarized in Table 2. Tentoxin is a natural cyclic
tetrapeptide produced by phytopathogenic fungi, Alternaria
species (19, 257, 342). In aqueous solution, tentoxin exists as
four interconverting conformations in different proportions
(51, 37, 8, and 4%) resulting from a “conformational peptide
flip” (318). At low concentrations, tentoxin acts as an uncom-
petitive inhibitor of the ATPase activity of CF1 derived from
certain sensitive plant species but not of homologous CF1s
from chloroplasts of some other plant species. Also, tentoxin
does not inhibit the ATPase activity of F1s derived from bac-
teria or mitochondria (19, 378, 380). Tentoxin also inhibits
ATP synthesis in chloroplasts from the sensitive species. In
contrast to the above, tentoxin at high concentrations strongly
stimulates ATPase activity of CF1 (379) and partially reacti-
vates the proton transport-coupled activity of the membrane-
bound CF0F1 (369). Based on labeling studies, tentoxin-sus-

TABLE 2. Tentoxin and tentoxin analogs

Name or
abbreviation Sequence Molecular

formula Inhibitory potency (reference)

Tentoxin Cyclo-(L-N-methyl-Ala1-L-Leu2-N-methyl-�ZPhe3-Gly4) C22H30N4O4 �0.6 mol/mola (spinach CF1-ATPase)
(179); 50 nMa (spinach CF1(-ε)-
ATPase) (69); 0.4–0.6 �Ma (lettuce
chloroplasts, photophosphorylation)
(380); 10 nMb (spinach CF1(-ε)-
ATPase) (350); 30–60 �Mb (60°C,
TF1-ATPase) (351); 8–10 nMc

(spinach CF1(-ε)-ATPase) (350, 351)
MeSer1-TTX Cyclo-(L-N-methyl-Ser1-L-Leu2-N-methyl-�ZPhe3-Gly4) C22H30N4O5 50 nMa (spinach CF1(-ε)-ATPase) (69);

0.5 �Ma with 2 min incubation and
0.1 �Ma with 30 min incubation in the
dark (spinach thylakoids, ATP
synthesis) (316); 15 nMc (spinach
CF1(-ε)-ATPase) (351)

Ala1-TTX Cyclo-(L-Ala1-L-Leu2-N-methyl-�ZPhe3-Gly4) C21H28N4O4 34 nMc (spinach CF1(-ε)-ATPase) (351)
Sar1-TTX Cyclo-(L-N-methyl-Gly1-L-Leu2-N-methyl-�ZPhe3-Gly4) C21H28N4O4 45 nMc (spinach CF1(-ε)-ATPase) (351)
Gly1-TTX Cyclo-(L-Gly1-L-Leu2-N-methyl-�ZPhe3-Gly4) C20H26N4O4 34 nMc (spinach CF1(-ε)-ATPase) (351)
MeSer(Bn)1-TTX Cyclo-(L-N-methyl-Ser(Bn)1-L-Leu2-N-methyl-�ZPhe3-Gly4) C29H36N4O5 0.5 �Ma (spinach CF1(-ε)-ATPase) (69);

0.5 �Mc (spinach CF1(-ε)-ATPase)
(351)

MeGlu1-TTX Cyclo-(L-N-methyl-Glu1-L-Leu2-N-methyl-�ZPhe3-Gly4) C24H32N4O6 5 �Ma (spinach CF1(-ε)-ATPase) (69)
MeGlu(tBu)1-

TTX
Cyclo-(L-N-methyl-Glu(tBu)1-L-Leu2-N-methyl-�ZPhe3-

Gly4)
C28H41N4O6 2 �Ma (spinach CF1(-ε)-ATPase) (69);

1.5 �Mc (spinach CF1(-ε)-ATPase)
(351)

Lys2-TTX Cyclo-(L-N-methyl-Ala1-L-Lys2-N-methyl-�ZPhe3-Gly4) C22H31N5O4 3 �Ma (spinach CF1(-ε)-ATPase); 2 �Mc

(spinach CF1(-ε)-ATPase) (351)
Lys(Z)2-TTX Cyclo-(L-N-methyl-Ala1-L-Lys(Z)2-N-methyl-�ZPhe3-Gly4) C30H37N5O6 1 �Ma (spinach CF1(-ε)-ATPase) (69);

0.75 �Mc (spinach CF1(-ε)-ATPase)
(351)

Me�Tyr3-TTX Cyclo-(L-N-methyl-Ala1-L-Leu2-N-methyl-�ZTyr3-Gly4) C22H30N4O5 0.05 �Ma (spinach CF1(-ε)-ATPase)
(69); 12 nMc (spinach CF1(-ε)-
ATPase) (351)

Tyr(Me)3-TTX Cyclo-(L-N-methyl-Ala1-L-Leu2-N-methyl-�ZTyr(Me)3-
Gly4)

C23H32N4O5 0.05 �Ma (spinach CF1(-ε)-ATPase)
(69); 10 nMc (spinach CF1(-ε)-
ATPase) (351)

�Phe3-TTX Cyclo-(L-N-methyl-Ala1-L-Leu2-�ZPhe3-Gly4) C21H28N4O4 0.8 �Mc (spinach CF1(-ε)-ATPase) (351)
Dihydro-TTX Cyclo-(L-N-methyl-Ala1-L-Leu2-N-methyl-Phe3-Gly4) C22H32N4O4 0.5 �Mc (spinach CF1(-ε)-ATPase) (351)
Iso3-TTX Cyclo-(L-N-methyl-Ala1-L-Leu2-N-methyl-�EPhe3-Gly4) C22H30N4O4 8.7 �Mc (spinach CF1(-ε)-ATPase) (351)

a I50.
b Ki.
c Kd.
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ceptible CF1 is considered to contain a high-affinity inhibitory
binding site and one or two low-affinity stimulatory binding
sites (69, 265, 317, 350). The binding of tentoxin to a low-
affinity binding site releases the inhibitory effect caused by
binding of tentoxin to the high-affinity binding site and reacti-
vates the enzyme. The binding of a tentoxin molecule to the
third site with very low affinity results in overactivation (265).
In the crystal structure of the CF1-tentoxin complex, a tentoxin
molecule is bound at the high-affinity binding site located in a
cleft at an �� subunit interface. Here, it blocks the contact
between �Arg-297 and �Asp-83 (153, 155), restrains the move-
ments of these residues, and also restrains conformational
changes at the catalytic interface. This may arrest the catalytic
�� interface in the closed conformation and thereby hinder its
transformation into the open conformation (153, 155).

MeSer1-TTX, Ala1-TTX, Sar1-TTX, Gly1-TTX, MeSer(Bn)1-
TTX, MeGlu1-TTX, MeGlu(tBu)1-TTX, Lys2-TTX, Lys(Z)2-
TTX, Me�Tyr3-TTX, Me�Tyr(Me)3-TTX, �Phe3-TTX, dihy-
dro-TTX, and Iso3-TTX are synthetic analogs of tentoxin in
which an amino acid residue is mutated at the residue number
indicated (316, 351) (Fig. 2C). MeSer1-TTX appears to inhibit
isolated CF1 and the membrane-bound enzyme (CF0CF1) in
thylakoids and proteoliposomes the same way and with the
same efficiency as tentoxin. However, MeSer1-TTX exhibits
much weaker reactivation of CF1 than tentoxin at high con-
centrations (69). On the other hand, Me�Tyr(Me)3-TTX
shows similar activities as tentoxin in both inhibitory and stim-
ulatory potencies (69). MeSer(Bn)1-TTX, MeGlu1-TTX,
Glu(tBu)1-TTX, Lys2-TTX, and MeSer1-TTX analogs exhibit
inhibitory activities with lower affinities but show no stimula-
tory effects (69).

Leucinostatins and Efrapeptins

The leucinostatins (A to D, H, and K) are nonapeptide
antibiotics produced by Paecilomyces (Fig. 2D and Table 3).
Leucinostatin A is produced by Paecilomyces lilacinus, P. mar-
quandii, and P. abruptus (434), leucinostatin B by P. lilacinus,
and P. marquandii (266), leucinostatin C by P. lilacinus (259),
leucinostatin D by P. lilacinus and P. marquandii (259, 339),
and leucinostatin H and K by P. marquandii (259, 339). Leuci-
nostatins adopt an �-helical conformation, and contains three
Aib residues and some uncommon amino acid residues (71).
Different types of leucinostatin differ in the kinds of amino acid
at position 2 (Dec or Leu) and in the substitution pattern at
the terminal nitrogen atom [-N(CH3)2, -NHCH3, -NH2, or
-NO(CH3)2]. Leucinostatins bind to the F0 part of ATP syn-
thases (127, 404, 439) and inhibit oxidative phosphorylation in
mitochondria and photophosphorylation in chloroplasts (224,
242, 328). Leucinostatins have no inhibitory activity on isolated
F1-ATPase (127, 439).

Efrapeptins are a group of lipophilic peptide antibiotics
(efrapeptins C to G) produced by Tolypocladium species (Fig.
2D and Table 3). Efrapeptin inhibits both ATP hydrolysis and
ATP synthesis reactions of the ATP synthase from mitochon-
dria, chloroplasts, and photosynthetic bacteria by binding at
the F1 catalytic domain (2, 164, 173, 224, 232, 241, 242).
Efrapeptin inhibits the ATP synthase from some, but not all,
nonphotosynthetic bacteria, including thermophilic Bacillus
strain PS3 (343, 436). The mode of inhibition by efrapeptin
during ATP synthesis is competitive with ADP and phos-
phate (83). Efrapeptin also binds to the nonmitochondrial
ATP synthase of endothelial cells and inhibits extracellular

TABLE 3. Leucinostatins and efrapeptins

Name Molecular formula Source Synonyms Inhibitory potency (reference)

Leucinostatin A, C62H111N11O13;
B, C61H109N11O13;
C, C60H107N11O13;
D, C56H101N11O11;
H, C57H103N11O12;
K, C62H111N11O14

A, P. lilacinus, P. marquandii,
and P. abruptus; B, P.
lilacinus and P.
marquandii; C, P. lilacinus;
D, P. lilacinus and P.
marquandii; H and K, P.
marquandii

A, A20668, paecilotoxin A,
CC-1014;

B, paecilotoxin B;
C, paecilotoxin C;
D, paecilotoxin D;
H, paecilotoxin H;
K, paecilotoxin K

11 �g/mg proteina (Crithidia asciculate
SMP-ATPase) (439); 2 �g inhibitor/
mla (spinach chloroplast,
photophosphorylation) (242); 0.1–
0.4 �g/mg protein (rat liver
mitochondria, ATPase) (328)

Efrapeptin C, C80H137N18O16
�;

D, C81H139N18O16
�;

E, C82H141N18O16
�;

F, C82H141N18O16
�;

G, C83H143N18O16
�

Tolypocladium species Efrastatin, A23871 0.56 mol/mol F1
a (bovine heart MF1-

ATPase) (83); 70 ng/mla (C.
asciculate MF1-ATPase) (173); 0.3
�Ma (human umbilical vein
endothelial cell, nonmitochondrial
ATP synthase, ATP synthesis) (17);
0.5 �g/mla (R. rubrum
chromatophores,
photophosphorylation) (241); 0.05–
0.5 �g of inhibitor/mg proteina (T.
pyriformis SMP-ATPase) (404); 21.5
�Mb (EF1-ATPase) (436); 10 nMc

(bovine heart MF1-ATPase) (83);
complete inhibition at 2.4 mol
inhibitor/mol enzyme (bovine heart
SMP-ATPase and ATP synthesis)
(83)

a I50.
b Ki.
c Kd.
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ATP synthesis (17). In the crystal structure of the F1-
ATPase–efrapeptin complex, a single efrapeptin molecule is
bound in the large central cavity of F1 lined with �E, �E,
�TP, and the �-helical structure of the � subunit. The bind-
ing of efrapeptin is stabilized predominantly by hydrophobic
interactions between efrapeptin and the residues in the cav-
ity and also by two potential intermolecular hydrogen bonds
(2). Efrapeptin is believed to inhibit the ATP synthase by
preventing the �E subunit from converting into a nucleotide
binding conformation.

POLYPHENOLIC PHYTOCHEMICALS, ESTROGENS,
AND STRUCTURALLY RELATED COMPOUNDS

Phytochemicals are naturally occurring bioactive nonnutrient
compounds derived from plants. They possess chemopreventive
or chemotherapeutic effects associated with reduced risk of vari-

ous diseases, including cancer, and they bind to multiple molec-
ular targets in the body (30, 286, 395). Phytochemicals are cate-
gorized into various groups, and among these are the
polyphenolic phytochemicals. Some of the polyphenolic phyto-
chemicals, many of which are phytoestrogens, bind to the ATP
synthase and inhibit its ATPase activity. (Fig. 3) (143, 448, 449).
The effects of polyphenolic phytochemicals on the ATPase activ-
ity of ATP synthase are additive, and the phenolic structures that
comprise the polyphenolic phytochemicals play an important role
in their inhibitory potencies (448). Two or more phenolic struc-
tures appear to be required, and the position of hydroxy groups
seems to affect significantly the inhibitory effectiveness of poly-
phenolic phytochemicals on the ATP synthase (448).

Some endogenous and synthetic estrogens also target ATP
synthase. Endogenous steroidal estradiols and estrogen metabo-
lites and synthetic nonsteroidal stilbene estrogens bind to mito-
chondrial ATP synthase and inhibit its ATPase activity (450, 451).

FIG. 3. Structures of polyphenolic phytochemicals, estrogens, and structurally related compounds. (A) Stilbenes. SITS, 4-Acetamido-4	-
isothiocyanostilbene 2,2	-disulfonate; DIDS, 4,4	-diisothiocyanatostilbene-2,2	-disulfonic acid. (B) Flavones and isoflavones. (C) Other polyphe-
nolic phytochemicals. ECG, epicatechin gallate; EGCG, epigallocatechin gallate. (D) Steroidal estradiols and estrogen metabolites.
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Stilbenes

Stilbenes consist of two phenolic rings linked by a spacer
containing a double bond (Fig. 3A). Stilbene phytoalexins,
resveratrol, and piceatannol are natural phytochemicals found
in grapevine organs such as berries, leaves, canes, and roots.
They inhibit the ATPase activity of mitochondrial ATP syn-
thase by targeting the F1 catalytic headpiece (Table 4) (325,
448, 449). The mode of inhibition by resveratrol is mixed (448).
In contrast to the above, resveratrol and piceatannol show no
inhibition of ATPase activity of F1 from thermophilic Bacillus
strain PS3 (TF1) (143). Resveratrol and piceatannol bind to a
hydrophobic pocket between the hydrophobic tip in the C-
terminal region of the � subunit and the hydrophobic inside of
an annulus provided by the �TP subunit (142). The binding of
these inhibitors, stabilized by hydrophobic interactions and
hydrogen bonds, is believed to block the rotation of the �
subunit, inhibiting both the hydrolysis and synthesis of ATP.
Resveratrol and piceatannol are bound to a single binding site
in F1, and there are no equivalent sites between the � subunit
and either the �DP or �E subunit.

Diethylstilbestrol (DES) is a synthetic nonsteroidal estro-
gen. DES targets F0 and inhibits both ATPase and ATP-de-
pendent proton translocation activities of both membrane-
bound and isolated F0F1 from mitochondria (252, 451). DES
inhibits membrane-bound F0F1 with half-maximal and maxi-
mal inhibitory effects at about 10 and 60 �M, respectively
(252). For the isolated F0F1, the concentration for 50% inhi-
bition is 10 �M, and maximal inhibition of ATPase activity is

about 90%. In contrast, DES has little effect on the ATPase
activity of the F1 moiety, exhibiting only �20% inhibition at 60
�M. The binding site of DES is considered to be structurally
distinct from other types of F0 inhibitors, as DES provides no
protection against the inhibition of the F0F1 complex by N,N	-
dicyclohexylcarbodiimide (DCCD), which is protected by oligo-
mycin, venturicidin, and tricyclohexyltin. The combination of
DES and DCCD produces a synergic inhibitory effect at low
concentrations (
20 �M).

4-Acetamido-4	-isothiocyanostilbene 2,2	-disulfonate and
4,4	-di-isothiocyanatostilbene-2,2	-disulfonic acid are structur-
ally very analogous and have been known as anion exchanger
inhibitors. They also bind to ATP synthase and inhibit its
catalytic activity. 4-Acetamido-4	-isothiocyanostilbene 2,2	-dis-
ulfonate strongly inhibits the ATPase activity of both F1 and
F0F1 from Vibrio parahaemolyticus (290, 344). 4,4	-Di-isothio-
cyanatostilbene-2,2	-disulfonic acid also inhibits both the hy-
drolysis and synthesis of ATP in submitochondrial particles
(SMP) and also ATP hydrolysis of isolated F1 from rat liver
mitochondria (40).

Flavones and Isoflavones

Flavones and isoflavones are flavonoid-related polyphenolic
compounds. Flavones and isoflavones differ in the position of
a phenyl group on the 4H-1-benzopyr-4-one skeleton. Flavones
are produced in various plants, whereas isoflavones are pro-
duced almost exclusively by beans. The flavones, quercetin,

TABLE 4. Stilbenes

Name or
abbreviation

Molecular
formula Source Other names Inhibitory potency, I50 (reference)

Resveratrol C14H12O3 Grapes and red wine 3,4	,5-Stilbenetriol; 3,4	,5-trihydroxystilbene 27.7 �M (rat brain SMP, ATP synthesis)
(448); 14 �M (rat liver MF1-ATPase)
(449); 19 �M (rat brain M F0F1-
ATPase) (448); 6.4 �M (bovine heart
MF1-ATPase) (143); 2 �M (human
umbilical vein endothelial cell,
nonmitochondrial ATP synthase, ATP
synthesis) (17)

Piceatannol C14H12O4 Seeds of Euphorbia
lagascae

3,5,3	,4	-Tetrahydroxystilbene;
3-hydroxyresveratol

8–9 �M (rat brain MF0F1 ATPase) (448,
449); 4 �M (rat liver MF1-ATPase)
(449); 6.1 �M (bovine heart MF1-
ATPase) (143); 1.5 �M (human
umbilical vein endothelial cell,
nonmitochondrial ATP synthase, ATP
synthesis) (143); �70% inhibition at
10 �M (bovine heart MF1-ATPase)
(325)

DES C18H20O2 Synthetic Diethylstilbestrol; (E)-4,4	-(1,2-diethyl-1,2-
ethenediyl)bisphenol;
4,4	-dihydroxydiethylstilbene; (E)-3,4-
bis(4-hydroxyphenyl)-3-ascic; Acnestrol;
Antigestil; Comestrol; Cyren; Desma;
Dibestrol; Distilbene; Estrobene;
Pabestrol; Stilbetin; Vagestrol

10 �M (rat liver MF0F1-ATPase) (252);
10–25 �M (rat brain MF0F1-ATPase)
(451)

SITS C17H14N2O7S3 Synthetic 4-Acetamido-4	-isothiocyanostilbene
2,2	-disulfonate

�1.3 �M (V. parahaemolyticus F0F1-
ATPase) (290); 95% inhibition at 25
�M (V. parahaemolyticus F1-ATPase)
(344)

DIDS C16H10N2O6S4 Synthetic 4, 4	-D-Isothiocyanatostilbene-2,2	-
disulfonic acid; diisothiocyanatostilbene-
2,2-disulfonic acid

20.9 �M (rat liver MF1ATPase) (40)
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kaempferol, morin, and apigenin inhibit ATP hydrolysis (Fig.
3B). Specifically, quercetin inhibits the ATPase activities of
mitochondrial F1 (MF1) and F0F1 (223, 448, 449) and also
these activities in spinach chloroplasts (96), Escherichia coli
(130), and Clostridium thermoaceticum (190). However, quer-
cetin inhibits neither the ATPase activity of TF1 (343), a ther-
mophilic bacterial ATP synthase, nor the ATP synthetic activ-
ity of mitochondrial ATP synthase (F0F1) (223). In contrast,
quercetin has a stimulatory effect on photophosphorylation
(218). Kaempferol and morin have inhibitory potencies similar
to that of quercetin on the ATPase activity of mitochondrial
F0F1, while apigenin, in which the 3-hydroxyl group in the
chromone moiety is absent, shows about half the inhibitory
potency (Table 5) (448).

Genistein, biochanin A, and daidzein are isoflavone phyto-
alexins found in soybeans. Genistein inhibits noncompetitively
both the ATP hydrolysis and ATP synthesis activities of mito-
chondrial ATP synthase, most likely by targeting F0 (448, 449).
Biochanin A inhibits the ATPase activity of mitochondrial
F0F1 with an inhibitory potency similar to that of genistein.
Compared to genistein and biochanin, daidzein contains only
one hydroxyl group in the 4-chromone moiety and shows about
half the inhibitory potency (448).

Other Polyphenolic Phytochemicals

Catechins are flavonoid compounds called flavan 3-ols. They
are abundant in green tea, which includes four main catechins,
epicatechin, epicatechin gallate, epigallocatechin, and epigal-
locatechin gallate. Among the catechins, epicatechin gallate
and epigallocatechin gallate are inhibitors of the ATP hydro-
lysis activity of ATP synthase (Fig. 3C) (448). Epigallocatechin
gallate, in which one more hydroxyl group is attached in the
catechol moiety of epicatechin gallate, shows about three times
higher potency than epicatechin gallate in the inhibition of
ATPase activity of mitochondrial F0F1.

Grape seed proanthocyanidin extract, curcumin, an active
ingredient of the Indian curry spice, and phloretin from apples
inhibit the ATPase activity of mitochondrial F0F1. Theaflavin,
a phytochemical from tea, and tannic acid, anionic polymers
from the bark of trees, also exhibit inhibitory effects on the
ATPase activity of mitochondrial F0F1 (Table 6) (448).

Steroidal Estradiols and Estrogen Metabolites

Endogenous steroidal estradiols and estrogen metabolites
have inhibitory effects on mitochondrial ATP synthase (Fig. 3D

TABLE 5. Flavones and isoflavones

Name Molecular
formula Source Other names Inhibitory potency (reference)

Quercetin C15H10O7 Various plants 3,3	,4	,5,7-Pentahydroxyflavone;
natural yellow 10; meletin; flavin
meletin; quercetol; Xanthaurine

5 kmol/mola (232), 85 �Ma (343) (bovine
heart MF1-ATPase); 180 �Ma (bovine
heart SMP-ATPase) (343); 50 �Ma (rat
brain F0F1-ATPase) (448); 3 �Ma (rat
liver F1-ATPase) (449); 2 kmol/mola

(spinach CF1-ATPase) (232); 2.6 �g/mg
proteina (C. asciculate SMP-ATPase)
(439); 0.2 mMb (pig heart MF1-
ATPase) (100); 27 �Mc (bovine heart
MF1-ATPase) (232); 46% inhibition at
5 �M (C. thermoaceticum membrane-
bound F0F1-ATPase) (190)

Kaempferol C15H10O6 Delphinium, witch-hazel,
grapefruit, and other
plant sources

Kempferol; campherol; indigo yellow;
nimbecetin; pelargidenolon;
populnetin; rhamnolutein; 3,4	,5,7-
tetrahydroxyflavone; trifolitin

55 �Ma (rat brain MF0F1-ATPase) (448)

Morin C15H10O7 Various plants 2	,3,4	,5,7-Pentahydroxyflavone;
2	,4	,5,7-tetrahydroxyflavan-3-ol;
3,5,7,2	,4	-pentahydroxyflavonol;
al-morin; aurantica; calico yellow;
osage orange

60 �Ma (rat brain MF0F1-ATPase) (448)

Apigenin C15H10O5 Parsley, artichoke, basil,
celery and other
plants

4	,5,7-Trihydroxyflavaone;
2-(p-hydroxyphenyl)-5,7-
dihydroxychromone; apigenol;
chamomile; spigenin

105 �Ma (rat brain MF0F1-ATPase (448)

Genistein C15H10O5 Soybean 4	,5,7-Trihydroxyisoflavone; genisteol;
genisterin; prunetol; sophoricol;
differenol A

55 �Ma (rat brain MF0F1-ATPase) (448);
10% inhibition at 50 �M (rat liver
F1-ATPase) (449)

Biochanin A C16H12O5 Soybean Biochanin; 4	-methylgenistein; 5,7-
dihydroxy-4	-methoxyisoflavone;
CCRIS 5449; 5,7-dihydroxy-4	-
methoxyisoflavone

65 �Ma (rat brain MF0F1-ATPase) (448)

Daidzein C15H10O4 Soybean 4	,7-Dihydroxyisoflavone; daidzeol;
7-hydroxy-3-(4-hydroxyphenyl)-4-
benzopyrone

127 �Ma (rat brain MF0F1-ATPase) (448)

a I50.
b Ki.
c Kd.
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and Table 7) (451). Two catecholestrogens, 4-hydroxyestradiol
and 2-hydroxyestradiol, inhibit the ATPase activity of the mi-
tochondrial ATP synthase, and the 4-hydroxyestradiol is about
twofold more effective than the 2-hydroxyestradiol. 17�-Estra-
diol and 17�-estradiol inhibit the ATPase activity of solubilized

brain mitochondrial fractions by 7 and 25% at 14 and 42 �M,
respectively. Two micoestrogens, �-zearalenol and �-zearale-
nol, also inhibit mitochondrial F0F1-ATPase activity. The I50

value of �-zearalenol is about 50 �M, and the inhibitory po-
tency of �-zearalenol is about three- to fourfold stronger than

TABLE 6. Other polyphenolic phytochemicals

Name or
abbreviation Molecular formula Source Other names Inhibitory potency, I50 (reference)

ECG C22H18O10 Green tea (�)Epicatechin gallate; epicatechin-3-
gallate; epicatechin-3-galloyl ester

45 �M (rat brain MF0F1-ATPase)
(448)

EGCG C22H18O11 Green tea (�)-Epigallocatechin gallate; (�)-
epigallocatechin gallate;
(�)-epigallocatechin-3-O-gallate;
CCRIS 3729; tea catechin

17 �M (rat brain MF0F1-ATPase)
(448)

GSPE C31H28O12 Grape seed Grape seed proanthocyanidin extract;
polyhydroxyflavan-3-ol

30 �g of inhibitor/ml (rat brain
F0F1-ATPase) (448)

Curcumin C21H20O6 Curcuma longa Natural yellow 3; 1,7-bis(4-ascicul-3-
methoxyphenyl)-1,6-heptadiene-3,5-
dione

40 �M (rat brain MF0F1 ATPase)
(448)

Phloretin C15H14O5 Mainly from apples Phloretol; 2	,4	,6	-trihydroxy-3-(p-
hydroxyphenyl)propiophenone;
dihydronaringenin; �-
(p-hydroxyphenyl)-2,4,6-
trihydroxypropiophenone

40% inhibition at 70 �M (rat
brain MF0F1-ATPase) (448)

Theaflavin C29H24O12 Tea 1,8-Bis((2R,3R)-3,5,7-trihydroxy-2H-1-
benzopyran-2-yl)-3,4,6-trihydroxy-
5H-benzocyclohepten-5-one

20 �g of inhibitor/ml (rat brain
F0F1-ATPase) (448)

Tannic acid A mixture of related
compounds (mainly
glucose esters of
gallic acid)

Bark of trees Gallotannic acid; gallotannin;
glycerite; tannin

5 �g of inhibitor/ml (rat brain
F0F1-ATPase) (448)

TABLE 7. Steroidal estradiols and estrogen metabolites

Name Molecular
formula Source Other names Inhibitory potency, I50 (reference)

4-Hydroxyestradiol C18H24O3 Natural estrogen 4-Hydroxyestradiol-17�; 4-hydroxy-17-
��estradiol; estra-1,3,5(10)-triene-
3,4,17-�-triol

55 �M (rat brain MF0F1-ATPase) (451)

2-Hydroxyestradiol C18H24O3 Natural estrogen (17�)-Estra-1,3,5(10)-triene-2,3,17-triol;
estra-1,3,5(10)-triene-2,3,17-�-triol

110 �M (rat brain MF0F1-ATPase) (451)

17-�-Estradiol C18H24O2 Natural estrogen 1,3,5-Estratriene-3,17-�-diol;
3,17-dihydroxyestratriene;
3,17-�-dihydroxyoestra-1,3,5(10)-triene;
epiestradial; epiestradiol;
estra-1,3,5(10)-triene-3,17�-diol;
oestra-1,3,5(10)-triene-3,17�-diol;
estradiol-17-�; �-estradiol

25% inhibition at 42 �M (rat brain
MF0F1-ATPase) (451)

17-�-Estradiol C18H24O2 Natural estrogen 1,3,5-Estratriene-3,17-�-diol; 17-�-estra-
1,3,5(10)-triene-3,17-diol; 17-�-OH-
estradiol; 17-�-OH-estradiol; 17-�-
oestra-1,3,5(10)-triene-3,17-diol; 17�-
oestra-1,3,5(10)-triene-3,17-diol; 3,17-
epidihydroxyestratriene;
3,17-epidihydroxyoestratriene; 3,17-�-
dihydroxy-1,3,5(10)-
oestratriene; 3,17-�-estradiol; 3,17-
��estradiol; Aerodiol; Aquadiol

7% inhibition at 14 �M (rat brain
MF0F1-ATPase) (451)

�-Zearalenol C18H24O5 Natural
mycoestrogen

(4S,8R,12E)-8,16,18-Trihydroxy-4-methyl-
3-oxabicyclo�12.4.0octadeca-
12,15,17,19
-tetraen-2-one; trans-zearalenol

50 �M (rat brain MF0F1-ATPase) (451)

�-Zearalanol C18H24O5 Natural
mycoestrogen

(8S,12E)-8,16,18-Trihydroxy-4-methyl-3-
oxabicyclo�12.4.0octadeca-12,15,17,19-
tetraen-2-one

150–200 �M (rat brain MF0F1-ATPase)
(451)

VOL. 72, 2008 ATP SYNTHASE INHIBITORS AS DRUG SCAFFOLDS 599



that of �-zearalenol. The mechanism of inhibition by the ste-
roidal estradiols and estrogen metabolites is not defined
clearly, but the ATP synthase OSCP subunit has been identi-
fied as an estradiol binding protein, and it has been suggested
that the inhibition is mediated by the binding of estrogens to
OSCP (450).

POLYKETIDE INHIBITORS

Polyketides are polymers of two-carbon ketide units synthe-
sized by polyketide synthases. Macrolides belong to the
polyketide class and contain a macrolide ring, a large lactone
ring to which one or more deoxy sugars, usually cladinose and
desosamine, are attached (Fig. 4). Some natural macrolides,
apoptolidin, cytovaricin, oligomycin, ossamycin, and venturici-
din are elaborated by Nocardiopsis spp. and various strains of
Streptomyces and are known as potent inhibitors of ATP syn-
thase (Table 8) (205, 207, 225, 330, 358, 359). The binding sites
of the macrolide inhibitors are located within the F0 part of the
complex.

Oligomycins are a closely related group of 26-membered
macrolides with both lactone moieties and double bonds. Oligo-
mycins are produced in various strains of Streptomyces. They
include six different types, A, B, C, D, E, and F, based on the
R groups attached to the macrolide ring and sugar. Oligomycin
D is also named rutamycin. Other specific oligomycins include
peliomycin and botrycidin; the latter is known also as venturi-
cidin X. Oligomycin inhibits ATP synthases from mitochondria
and the chromatophores of photosynthetic bacteria (85, 150,
151, 253, 311, 347, 360). However, it has no or only a weak
effect on photophosphorylation activity in chloroplasts and on
membrane-bound ATPase activity of nonphotosynthetic bac-
teria (22, 36, 118, 285, 311, 376). Mutagenesis studies that
cause resistance to oligomycin in yeast implicate a target site
residing at the interface of subunits a and c, with an involve-
ment of both Gly23 and Glu59 of the N- and C-terminal trans-
membrane helices of subunit c, respectively (97, 192, 280).
Yeast Glu59 of subunit c is equivalent to E. coli Asp61, located
in the middle of the membrane, and is believed to be involved
in proton translocation that drives ATP synthesis.
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Peliomycin, produced from various strains of Streptomyces
(323, 358), is cytotoxic to mammalian cells, with limited anti-
microbial and antifungal activities. The inhibitory properties of
peliomycin on ATP synthesis by oxidative phosphorylation in
mitochondria mimic those of rutamycin (423).

Venturicidin consists of three different types, A, B, and X,
where venturicidin X is an aglycone of venturicidin A or B
(401). It binds to subunit c of the ATP synthase and inhibits
both proton translocation and membrane-bound ATPase ac-
tivities from bacteria, chloroplasts, and mitochondria (62, 251,

311, 423, 447). The region conferring venturicidin resistance or
hypersensitivity in ATP synthase is located in the middle of the
membrane, and most of this region overlaps with that for
oligomycin resistance (123, 131, 280).

Ossamycin is a 24-membered macrolide produced in
Streptomyces hygroscopicus subsp. ossamyceticus (209, 359).
Ossamycin inhibits both the ATPase and oxidative phosphor-
ylation activities of mitochondrial ATP synthase (150, 423).
It has no direct effect on E. coli F1 (EF1) or F0, but it does
inhibit ATP-driven proton transport by uncoupling ATP

TABLE 8. Polyketide inhibitors

Name Molecular formula Source Other names Inhibitory potency (reference)

Oligomycin A, C45H74O11;
B, C45H72O12;
C, C45H74O10;
D, C44H72O11;
E, C45H72O13;
F, C46H76O11

A, B, and C, Streptomyces
diastratochroogenes;

D, Streptomyces griseus,
Streptomyces aureofaciens,
Streptomyces rutgersensis

D, Rutamycin, 26-demethyl-
oligomycin A, A272

152 �g inhibitor/mg proteina (E. coli
membrane vesicle, pH gradient
formation) (311); 7.1 �g inhibitor/
mg proteina (C. asciculate SMP-
ATPase) (439); 2.0–3.0 �g inhibitor/
mg proteina (S. cerevisiae SMP-
ATPase) (150, 151); A, 0.3 �Ma

(human NCI-60 cell lines, F0F1-
ATPase) (348); 15 ng inhibitor/mg
proteinb (N. crassa SMP-ATPase)
(112); 0.21 �Mb (bovine heart
MF0F1-ATPase) (85); 95%
inhibition at 0.4 �g inhibitor/mg
protein (bovine heart SMP-ATPase)
(140); D, 75% inhibition at 0.5 �g/
ml (rat liver SMP-ATPase) (423)

Peliomycin C46H76O14 Various strains of
Streptomyces

4.5 �g inhibitor/mg proteina (S.
cerevisiae SMP-ATPase) (150)

Venturicidin A, C41H57NO11;
B, C40H64NO10;
X, C34H54O7

Streptomyces aureofaciens,
Streptomyces griseolus,
Streptomyces halstedii,
Streptomyces xanthophaeus,
Streptomyces hygroscopicus

X, botrycidin 9 �g inhibitor/mg proteina (E. coli
pH gradient formation by
membrane vesicle) (311); 11 �g
inhibitor/mg proteina (E. coli
membrane-bound ATPase) (311);
0.13 �g inhibitor/mg proteina (150);
0.06–0.18a (A and B) and 11.0a (X)
�g inhibitor/mg protein (S. cerevisiae
SMP-ATPase) (151); 5–11 �g
inhibitor/mg proteina (T. pyriformis)
(404); 3.0 �g/mg proteina (C.
asciculate SMP-ATPase) (439); 0.5
�Ma (spinach thylakoids,
photophosphorylation) (447); 0.5
�Ma (spinach thylakoids, ATPase)
(447)a

Ossamycin C50H87NO14 S. hygroscopicus subsp.
ossamyceticus

1.3 �g of inhibitor/mg proteina (S.
cerevisiae SMP-ATPase) (150); 46
�g of inhibitor/mg proteina (E. coli
pH gradient formation by
membrane vesicle) (311); 8 �Ma

(human NCI-60 cell lines, F0F1-
ATPase) (348)

Apoptolidin C58H96O21 Nocardiopsis sp. 4–5 �Mb (S. cerevisiae membrane-
bound F0F1-ATPase) (349); 18 �Ma

(human NCI-60 cell lines, F0F1-
ATPase) (348)

Cytovaricin C48H82O15 Streptomyces sp. strain H-230 H-230 1 �Ma (human NCI-60 cell lines,
F0F1-ATPase) (348); 0.4 �Mb (S.
cerevisiae membrane-bound F0F1-
ATPase) (349)

a I50.
b Ki.
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hydrolysis from proton transport (311). The binding site of
ossamycin in mitochondrial ATP synthase lies close to the
boundaries of regions that cause oligomycin and venturici-
din resistance in subunit c. This site contains residues Leu53
to Leu57 (yeast sequence) in the C-terminal transmembrane
helix (131).

Apoptolidin and cytovaricin are 20- and 26-membered mac-
rolides found in Nocardiopsis spp. and Streptomyces sp. strain
H-230, respectively. Both apoptolidin and cytovaricin inhibit
membrane-bound mitochondrial ATP synthase. The precise
binding sites of apoptolidin and cytovaricin are not yet defined.
However, they are believed to be located at regions where
oligomycin and ossamycin bind, as the chemical backbones of
these inhibitors are structurally similar to those of oligomycin
and ossamycin (349).

ORGANOTIN COMPOUNDS AND
STRUCTURAL RELATIVES

Organotin compounds are organic compounds that contain
tin. They are classified as R4Sn, R3SnX, R2SnX2, and RSnX3.
Among these, R3SnX organotin compounds have been used as
biocides and pesticides and are known to inhibit ATP synthase
(Fig. 5) (148–150, 190, 252, 403–405, 418, 437). Some R4Sn
organotin compounds, such as tributyltin 3-hydroxyflavone,
also inhibit ATP synthase (405). The organotin compounds
inhibit both ATP hydrolysis and ATP synthesis catalyzed by the

membrane-bound and isolated F0F1 complex. However, they
have no effect on the ATPase activity of isolated F1 (Table 9).
Organotin compounds react noncovalently with the ATP syn-
thase, and the inhibitory effect of the compounds is reversed by
mono- and dithiols such as dithiothreitol and mercaptoethanol
(437). The sites of action of organotin compounds are lo-
cated in the ion channel within subunit a. Here, they are
believed to inhibit ATP synthase by competing with Na� or
H� for the same binding site (418). Diorganotin-3-hydroxy-
flavone complexes such as dibutyltin 3-hydroxyflavone bro-
mide and diphenyltin 3-hydroxyflavone chloride show a
marked fluorescence enhancement on binding to mitochon-
drial ATP synthase (405).

POLYENIC �-PYRONE DERIVATIVES

�-Pyrone (or 2-pyrone) is a six-membered cyclic unsatur-
ated ester. Its derivatives are widely distributed in nature,
and some �-pyrone-containing mycotoxins, such as aurover-
tin, citreoviridin, and asteltoxin, inhibit ATP synthase by
targeting F1 (Fig. 6).

Aurovertin is an antibiotic from Calcarisporium arbuscula.
Five different types of aurovertins (A to E) have been reported
(Table 10). Aurovertin inhibits the ATPase activity of F1 from
mitochondria and mesophilic bacteria (108, 189), whereas it
has no inhibitory effect on thermophilic TF1 (196, 343). It binds
to the ATP synthase � subunit and inhibits its ATPase activity
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uncompetitively (108, 189). There are two or three binding
sites for aurovertin in F1 in the presence of ADP: one high-
affinity site (Kd [dissociation constant] of 0.2 to 1 �M) and the
others (one or two) of lower affinity (Kd of 3 to 6 �M) (188,
416). In contrast, two high-affinity sites are observed in the
presence of ATP (188). In the crystal structure of one F1-
aurovertin complex (410), two aurovertin B molecules are
bound at two equivalent sites within the �TP and �E subunits.
These sites are located in a cleft between the nucleotide bind-
ing and C-terminal domains of the subunits and do not overlap
with the nucleotide binding sites. In �TP, the pyrone ring of
aurovertin interacts with �-Glu399 of �TP. However, in �E the
pyrone ring has no equivalent interaction with �E, as the au-
rovertin bound in �E is too far from �E. The interactions
between aurovertin and amino acids are mainly hydrophobic.
In �DP, the interface between �DP and �DP is tightly packed,
making the aurovertin binding pocket inaccessible (410). In the
binding of aurovertin to F1, �-Arg398 (E. coli sequence) ap-

pears to play an important role, as mutations in this residue
confer aurovertin resistance (230, 231, 424). In bacteria that
are naturally resistant to aurovertin, the �-Arg398 residue is
replaced with other amino acid residues (172, 343). Aurovertin
is believed to inhibit F1 by preventing catalytic interface clo-
sure involved in the cyclic interconversion of catalytic sites
(410, 430). In addition, aurovertin increases the affinity of F1

for phosphate (307). Aurovertin fluoresces weakly at 470 nm,
and this is enhanced by 50- to 60-fold when aurovertin binds to
F1 (74, 136, 232). The fluorescence increase is considered to be
due to the limited mobility of aurovertin at its binding site
and has been used to monitor inhibition of F1-ATPase activity
(74, 136).

Aurovertin B has been tested for the treatment of breast
cancer cells as an anticancer agent and has shown strong inhi-
bition of the proliferation of breast cancer cell lines, whereas it
showed little influence on normal cells (180). Aurovertin B

TABLE 9. Organotin compounds and structural relatives

Name Molecular
formula Other names Inhibitory potency (reference)

Tributyltin chloride C12H27ClSn TBT-Cl; tributylchlorostannane; chlorotributyltin;
tri-n-butyltin chloride; monochlorotributyltin;
tri-n-butylchlorotin; tributylstannyl chloride

200 nMb (E. coli and I. tartaricus F0F1-
ATPase) (418); 47% inhibition at 1 �M
and 87% inhibition at 5 �M (C.
thermoaceticum membrane-bound F0F1-
ATPase) (190); 80% inhibition at 1 �M
(TF0F1-ATPase) (403)

Tricyclohexyltin hydroxide C18H34OSn Cyhexatin; tricyclohexylhydroxytin;
hydroxytricyclohexylstannane;
tricyclohexylhydroxystannane;
tricyclohexylstannanol; Plictran;
tricyclohexylstannium hydroxide

92.9% inhibition at 37 �M (rat liver
MF0F1-ATPase) (252)

Triethyltin sulfate C12H30O4SSn2 Triethylstannium hydrogen sulfate;
bis(triethyltin) sulfate; triethylhydroxytin
sulfate

0.13 �g of inhibitor/mg proteina (S.
cerevisiae SMP-ATPase) (150, 151); 3–7
�g of inhibitor/mg proteina (T.
pyriformis SMP-ATPase) (404); 1.2 �g/
mg proteina (C. asciculate SMP-
ATPase) (439)

Triphenyltin chloride C18H15ClSn Chlorotriphenylstannane; chlorotriphenyltin;
triphenylchlorotin


10 �Ma (bovine heart SMP-ATPase)
(437)

Dimethyltin 3-hydroxyflavone
chloride

C17H15ClO3Sn 12–13 nmol inhibitor/mg proteina (rat
liver SMP-ATPase) (405)

Diethyltin 3-hydroxyflavone
chloride

C19H19ClO3Sn 1.5 nmol inhibitor/mg proteina (rat liver
SMP-ATPase) (405)

Dibutyltin 3-hydroxyflavone
bromide

C23H27BrO3Sn 0.7–0.9 nmol inhibitor/mg proteina (rat
liver SMP-ATPase) (405)

Dioctyltin 3-hydroxyflavone
chloride

C31H43ClO3Sn 12–13 nmol inhibitor/mg proteina (rat
liver SMP-ATPase) (405)

Diphenyltin 3-hydroxyflavone
chloride

C27H19ClO3Sn 1.5 nmol inhibitor/mg proteina (rat liver
SMP-ATPase) (405)

Diethyltin 3,5,7,2	,4	-
pentahydroxy flavone
chloride

C19H19ClO7Sn 5–6 nmol inhibitor/mg proteina (rat liver
SMP-ATPase) (405)

Dibutyltin 3,5,7,2	,4	-
pentahydroxy flavone
bromide

C23H27BrO7Sn 0.6–0.8 nmol inhibitor/mg proteina (rat
liver SMP-ATPase) (405)

Diphenyltin 3,5,7,2	,4	-
pentahydroxy flavone
chloride

C27H19ClO7Sn 3.5–4 nmol inhibitor/mg proteina (rat liver
SMP-ATPase) (405)

Tributyltin 3-hydroxyflavone C27H36O3Sn 1.5–2 nmol inhibitor/mg proteina (rat liver
SMP-ATPase) (405)

Triethyllead C6H15ClPb Triethylplumbane 16–17 �Ma (rat liver SMP-ATPase) (275)

a I50.
b Ki.
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induced apoptosis of cancer cells and arrested their cell cycles
in G0/G1 phase.

Citreoviridin, produced by some molds of the genera Peni-
cillium and Aspergillus, inhibits the ATPase activities of F1

from bacteria and mitochondria by binding to the ATP syn-
thase � subunit (136, 353) (Table 10). However, ATP synthases
from some species are resistant (404, 439). In sensitive species,
citreoviridin acts as an uncompetitive inhibitor of ATP hydro-
lysis by soluble and membrane-bound ATP synthase and as a

noncompetitive inhibitor of ATP synthesis by the membrane-
bound ATP synthase enzyme (354). The binding of citreoviri-
din to F1 or its isolated � subunit is noncompetitive with
respect to aurovertin (136). Although the binding site of cit-
reoviridin within the � subunit is not clarified, it has been
suggested that citreoviridin and aurovertin interact at separate
sites (136). Citreoviridin fluoresces weakly at 530 nm when
irradiated at 380 nm. However, unlike aurovertin, enhance-
ment is not observed when bound to F1 (233). Light converts
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FIG. 6. Structures of polyenic �-pyrone derivatives.

TABLE 10. Polyenic �-pyrone derivatives

Name Molecular formula Source Inhibitory potency (reference)

Aurovertin A, C27H34O9; B, C25H32O8;
C, C24H30O8; D, C25H32O9;
E, C23H30O7

C. arbuscula 9.2 �mol/mg proteina and 25 �Mc (aurovertin
A, bovine heart MF1-ATPase) (232); 2 �Ma

(aurovertin B, EF1-ATPase) (353); 17–30
nmol/mg proteina and 0.1 �Mc (aurovertin
B, bovine heart MF1-ATPase) (232); 2
nmol/mg proteina and 0.6 �Mc (aurovertin
C, bovine heart SMP) (232); 0.9 �Ma

(aurovertin D, EF1-ATPase) (353); 1 �Ma

(aurovertin D, EF1-ATPase) (436); 9–20
nmol/mg proteina and 60 nMc (aurovertin
D, bovine heart MF1-ATPase) (232); 1.6
�mol/mg proteina and 22 �Mc (aurovertin
E, bovine heart SMP) (232); 80 nMa (rat
liver MF1-ATPase) (108); 66% inhibition
at 10 �M (bovine heart MF1-ATPase)
(325)

Citreoviridin A, C23H30O6; B, unknown;
C, C23H30O6; D, C24H32O6

A, Penicillium citreoviride,
Penicillium toxicarium,
Penicillium
ochrosalmoneum, Aspergillus
terreus; B, A. terreus; C, A.
terreus; D, A. terreus

60 �Ma (EF1-ATPase) (353); 1.11 �mol/mg
proteina (bovine heart MF1-ATPase) (232);
2 �Mb (S. cerevisiae MF1-ATPase) (136);
4.23 �Mb (354) (bovine heart
MF1-ATPase); 2.82 �Mb (354), 6.1 �Mb

(354) (bovine heart SMP-ATPase); 3.1 �Mc

(232), 4.1 �Mc (354) (bovine heart MF1-
ATPase); 60 �Mc (EF1-ATPase) (353)

Asteltoxin C23H30O7 A. stellatus Curzi, E. variecolor 10 �Ma (EF1-ATPase) (352); �450 nMa

(state 3 respiration of rat liver
mitochondria) (200); 8 �Mc (EF1-ATPase)
(352)

a I50.
b Ki.
c Kd.
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citreoviridin to its stereoisomer, isocitreoviridin, which has no
effect on either ATP hydrolysis or ATP synthesis catalyzed by
ATP synthase (354).

Asteltoxin is made in Aspergillus stellatus Curzi and Emeri-
cella variecolor. It contains a unique 2,8-dioxabicyclooctane
ring and inhibits both BF1 and MF1 with a stoichiometry of 1:1
in the presence of ADP (Table 10) (200, 352). As asteltoxin
fails to inhibit aurovertin-resistant mutants, it is believed to
bind to the same site as aurovertin (352). Asteltoxin binding to
F1 shows an enhancement of fluorescence (emission maximum,
470 nm; excitation maximum, 385 nm). The ADP-stimulatory
effect and the Mg2�-quenching effect on the fluorescence en-
hancement of asteltoxin binding are similar to those observed
for aurovertin. However, the stimulatory effect on phosphate
binding to F1 observed with aurovertin is not observed with
asteltoxin (352).

CATIONIC INHIBITORS

Amphiphilic Cationic Dyes

Amphiphilic cationic dyes containing a basic amine group
and a lipophilic portion (Fig. 7A) inhibit the ATPase activities
of both F1 and F0F1. Most exhibit a stronger inhibitory effect
on the ATPase activity of F0F1 than on that of F1 (Table 11).

Rhodamines are a group of fluorone dyes made by fusing an
amino derivative of phenol with phthalic anhydride, and they
include rhodamine B, rhodamine 123, and rhodamine 6G.
Rhodamine B and rhodamine 123 inhibit the ATPase activity
of MF1 from bovine heart in a parabolic, noncompetitive man-
ner, whereas inhibition by rhodamine 6G is mixed (433). In
contrast, rhodamine 6G acts as an uncompetitive inhibitor of
MF1 and as a noncompetitive inhibitor for isolated and mem-
brane-bound ATP synthase F0F1 from yeast (433). Rhodamine
B and rhodamine 123 are considered to bind F1 at more than
one binding sites, while rhodamine 6G at high concentrations
is believed to bind at least two binding sites (52). The precise
location of rhodamine 6G binding sites in the three-dimen-
sional structure of F1 has yet to be identified (143).

Rosaniline, malachite green, and brilliant green are closely
related in structure. Rosaniline and malachite green inhibit
MF1 in a parabolic mixed fashion, indicating at least two bind-
ing sites at high concentrations (52).

Quinacrine inhibits reversibly the ATPase activities of EF1

and bovine MF1 with a similar inhibitory potency (220, 268).
This agent inhibits the ATP hydrolysis activity of F1 competi-
tively when Mg2� is at a constant concentration and ATP at a
variable concentrations (220, 268). Quinacrine mustard is a
quinacrine derivative in which a diethyl group attached to the
tertiary amino group is replaced by a bischloroethyl groups.
The quinacrine mustard binds to F1 and alkylates � subunits.
The inhibition of the ATPase activity of F1 by quinacrine
mustard is irreversible (220) and is due, at least in part, to
modification of one or more of the carboxylic acid side chains
in the � subunit DELSEED region and possibly also to mod-
ification of unspecified amino acid side chains between resi-
dues �302 and 356 in the bovine sequence (53). The rate of
inactivation of MF1 and TF1 by quinacrine mustard is inhibited
by ATP, whereas the rate of inactivation of EF1 is stimulated
by ATP (54).

Acridine orange and coriphosphine are acridine derivatives
that inhibit the ATPase activity of MF1 in a mixed fashion (52).
Pyronin Y, a xanthene derivative, inhibits the ATPase activities
of F0F1 from mitochondria and E. coli (52, 268). Here, the
inhibitory effect on the mitochondrial ATPase is more potent
for F0F1 (�100-fold) than for F1 (52).

Dequalinium is a quinoline derivative that inhibits the
ATPase activities of F1 from both mitochondria and bacteria
(52, 268, 296, 329, 452). Dequalinium inhibits chloroplast
Ca2�-ATPase, whereas it stimulates chloroplast Mg2�-ATPase
(329). The inhibition of ATPase activity by dequalinium is
reversible, hyperbolic, and noncompetitive for MF1 and TF1 in
the dark (52, 268, 296, 329, 452). A long lag is observed in the
inhibition of TF1 by dequalinium that is not observed for the
inhibition of MF1 (296). Dequalinium, upon illumination at
350 nm, inactivates F1-ATPase with pseudo-first-order kinetics
(296, 329, 452, 454). This is accompanied by derivatization of
�Phe420 in TF1 (296), �Met183 in CF1 (329), and �Phe403,
�Phe406, and a side chain within residues 440 to 459 of the �
subunit in bovine heart MF1 (454).

Safranin O inhibits the ATPase activities of membrane-
bound F0F1 from both bovine heart mitochondria and E. coli
(52, 268). Safranin O also inhibits soluble MF1 with weaker
inhibitory potency (52). Nile blue A inhibits the ATPase activ-
ity of membrane-bound F0F1 from mitochondria, whereas it
has no inhibitory effect on isolated F1 (52). Ethidium bromide
inhibits noncompetitively ATP hydrolysis by both MF1 and
F0F1 from Saccharomyces cerevisiae (82, 433), with similar in-
hibitory potencies (66, 82).

TALAs and Related Compounds

Tertiary amine local anesthetics (TALAs) are composed of
an aromatic portion, an intermediate chain, and a terminal
amine group (Fig. 7B) (370). The intermediate chain contains
either an ester (tetracaine and procaine) or an amide (dibu-
caine and lidocaine) group. In procainamide, the ester group in
procaine is replaced with an amide. Chlorpromazine and tri-
fluoroperazine are cationic phenothiazine derivatives. The
TALAs are known to inhibit primarily sodium influx through
sodium-specific ion channels in the neuronal cell membrane.
However, they can also bind to ATP synthases from mitochon-
dria and some bacteria and can inhibit ATP hydrolysis activity
(Table 12) (76, 406).

TALAs inhibit both membrane-bound and soluble MF1. In-
hibition of MF1 is reversible, and the concentration ranges for
inhibition are near those for blocking nerve conduction (76).
The hydrophobicity of TALAs seems to determine their rela-
tive affinities for F1, as the inhibitory potencies are directly
correlated with the octanol/water partition coefficient (76).
Among the TALAs, procainamide shows activation of the
ATPase activity of F1 at low concentrations prior to its inhibi-
tion of F1 at high concentrations. This is not observed with
other TALAs (76). The mechanism of the inhibitory action of
TALAs on MF1 is still controversial, with one view implicating
the induction of the structural dissociation of the multisubunit
structure of F1 (76) and a second view the interaction with the
catalytic sites of F1 (221).

In contrast to the case for the mitochondrial ATP synthase,
the TALAs inhibit bacterial ATP synthases selectively. For

VOL. 72, 2008 ATP SYNTHASE INHIBITORS AS DRUG SCAFFOLDS 605



FIG. 7. Structures of cationic inhibitors. (A) Amphiphilic cationic dyes. EtBr, ethidium bromide. (B) TALAs and related compounds. (C) Other
organic cations. DPBP, 4,4-diphenyl-2,2-bipyridine; PDT, 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine.
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TABLE 11. Amphiphilic cationic dyes

Name or
abbreviation

Molecular
formula Other names Inhibitory potency (reference)

Rhodamine B C28H31ClN2O3 N-(9-(2-Carboxyphenyl)-6-(diethylamino)-3H-
xanthen-3-ylidene)-N-ethylethanaminium
chloride; rheonine B; rhodamine O;
rhodamine S

475 �Ma (bovine heart MF1-ATPase) (52); 125 �Ma

(bovine heart MF0F1-ATPase) (52)

Rhodamine 123 C21H17ClN2O3 3,6-Diamino-9-(2-
(methoxycarbonyl)phenyl)xanthylium
chloride; RH 123

270 �Ma (bovine heart MF1-ATPase) (52); 141 �Ma

(bovine heart MF0F1-ATPase) (52); 580 �Ma

(EF0F1-ATPase) (268); 177 �Mb (rat liver MF1-
ATPase) (113)

Rhodamine 6G C28H31ClN2O3 Basic rhodamine yellow; rhodamine J 10 �Ma (bovine heart MF1-ATPase) (52); 27 �Ma

(bovine heart MF1-ATPase) (143); 2 �Ma (bovine
heart MF0F1-ATPase) (52); 34 �Ma (EF0F1-
ATPase) (268); 2.4 �Mb (S. cerevisiae MF1-
ATPase) (433); 1.95 �Mb (S. cerevisiae MF0F1-
ATPase) (433); 1.91 �Mb (S. cerevisiae SMP-
ATPase) (433)

Rosaniline C20H20ClN3 Magenta base; 4-((4-aminophenyl)(4-imino-
2,5-cyclohexadien-1-ylidene)methyl)-2-
methylbenzenamine

15 �Ma (bovine heart MF1-ATPase) (52); 16 �Ma

(bovine heart MF0F1-ATPase) (52)

Malachite green C23H25N2Cl Aniline green; benzal green; Victoria green;
(4-(4-dimethylaminobenzhydriylidene)cyclo-
hexa-2,5-dienylidene)dimethylammonium
chloride

14 �Ma (bovine heart MF1-ATPase) (52); 7 �Ma

(bovine heart MF0F1-ATPase) (52)

Brilliant green C27H33N2.HO4S Basic green 1; (4-(4-(diethylamino)
benzhydrylene)cyclohexa-2,5-dien-1-
ylidene)diethylammonium hydrogen sulfate

27 �Ma (EF0F1-ATPase) (268)

Quinacrine C23H30ClN3O 2-Methoxy-6-chloro-9-
diethylaminopentylaminoacridine; 3-chloro-
7-methoxy-9-(1-methyl-4-
diethylaminobutylamino)acridine;
mepacrine

580 �Ma (EF0F1-ATPase) (268); 580 �Ma (bovine
heart MF1-ATPase) (220); 440 �Mb (bovine heart
MF1-ATPase) (220)

Quinacrine
mustard

C23H28Cl3N3O Quinacrine mustard dihydrochloride; 2-
methoxy-6-chloro-9-(3-(ethyl-2-
chloroethyl)aminopropylamino)acridine
dihydrochloride; 9-�4-(bis(2-
chloroethyl)amino)-1-methylbutylamino-
6-chloro-2-methoxyacridine dihydrochloride

5.3 �Ma (EF0F1-ATPase) (268); 27 �Mc (bovine
heart MF1-ATPase) (53)

Acridine orange C17H19N3Cl 3,6-Acridinediamine, N,N,N	,N	-tetramethyl-,
monohydrochloride; 3,6-
bis(dimethylamino)acridine hydrochloride;
rhoduline orange

180 �Ma (bovine heart MF1-ATPase) (52); 1 �Ma

(bovine heart MF0F1-ATPase) (52); 68 �Ma

(EF0F1-ATPase) (268)

Coriphosphine C16H17N3.HCl Coriphosphine O; coriphosphine OX; 3-
amino-6-(dimethylamino)-2-methylacridine
monohydrochloride

480 �Ma (bovine heart MF1-ATPase) (52); 16 �Ma

(bovine heart MF0F1-ATPase) (52)

Pyronin Y C17H19ClN2O Pyronine; pyronin G 1.65 mMa (bovine heart MF1-ATPase) (52); 10 �Ma

(bovine heart MF0F1-ATPase) (52); 70 �Ma

(EF0F1-ATPase) (268)
Dequalinium C30H40N4 1,1	-(1,10-Decanediyl)bis(4-amino-2-methyl-

quinolinium
8 �Ma (52), 12 �Ma (452), 46 �Ma (143) (bovine

heart MF1-ATPase); 24 �Ma (EF0F1-ATPase)
(268); 50 �Ma (TF1-ATPase, photoinactivation)
(296);19 mM (Bacillus PS3 ATPase, ��� complex)
(143); 4 �Mb (spinach CF1, Ca2�-ATPase) (329);
12.5 �Mc (TF1-ATPase) (296); 12.5 �Mc (bovine
heart MF1-ATPase) (452)

Safranin O C20H19ClN4 Basic red 2; 3,7-diamino-2,8-dimethyl-5-
phenylphenazinium chloride; safranine T

1.14 mMa (bovine heart MF1-ATPase) (52); 175
�Ma (bovine heart MF0F1-ATPase) (52); 330
�Ma (EF0F1-ATPase) (268)

Nile blue A C20H20N3OCl Nile blue; Nile blue AX; 5-amino-9-
(diethylamino)benzo(a)phenoxazine-7-ium
chloride

�2,000 �Ma (bovine heart MF1-ATPase) (52); 16
�Ma (bovine heart MF0F1) (52)

EtBr C21H20BrN3 Ethidium bromide; homidium bromide; AI3–
62997; 2,7-diamino-10-ethyl-9-
phenylphenanthridinium bromide

220 �Ma (S. cerevisiae MF1-ATPase) (82); 250 �Ma

(Trypanosoma cruzi F0F1-ATPase) (66); 279 �Mb

(S. cerevisiae MF1-ATPase) (433); 256 �Mb (S.
cerevisiae MF0F1-ATPase) (433); 263.6b �M (S.
cerevisiae SMP-ATPase) (433)

a I50.
b Ki.
c Kd.
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example, they exhibit no inhibition of F1 from the thermophilic
bacterium PS3 under the conditions tested (343). However,
tetracaine and dibucaine do inhibit the ATPase activity of the
membrane-bound ATP synthase from the bacterium Mycobac-
terium phlei (4), whereas procaine and lidocaine show no in-
hibitory effects. In addition, tetracaine and dibucaine show no
or partial inhibition of the ATPase activity of soluble F1, in
contrast to full inhibition of the ATPase activity of the mem-
brane-bound ATP synthase. Upon inhibition (uncompetitive)
of the membrane-bound ATP synthase from M. phlei by tetra-
caine and dibucaine, proton conductivity is markedly inhibited.
Tetracaine and DCCD are not mutually exclusive in binding to
the ATP synthase from M. phlei, and they appear to bind to
separate binding sites within the proton-translocating “F0” re-
gion (4).

Chlorpromazine and trifluoroperazine interact with various
subunit types of F1 and F0. Both bind to membrane-bound
subunits more readily than to soluble subunits, with triflu-

oroperazine binding to hydrophobic subunits more extensively
than chlorpromazine (88). The binding sites of chlorpromazine
and trifluoroperazine are not identical and mutually nonexclu-
sive (87, 88). Upon photoactivation with UV light, the phe-
nothiazine moiety of chlorpromazine and trifluoroperazine
forms covalent bonds with the ATP synthase, leading to its
irreversible inhibition. In other studies, chlorpromazine has
been shown to protect MF1 and EF1 against both cold-induced
dissociation and inactivation by DCCD (54). This agent is
believed to cause inhibition by interacting with the catalytic site
at position �Glu188 (bovine sequence). However, in other
studies, chlorpromazine has been shown to stimulate the
ATPase activity of TF1 both at 37°C and at low concentrations
(below 0.6 mM) at 23°C. It shows no inhibition up to 1.2 mM
at 37°C or 60°C (54).

Propranolol is a nonselective beta blocker for the treatment
of hypertension. It is not a TALA and has no ester or amide
group in the intermediate chain. However, it is structurally

TABLE 12. Tertiary amine local anesthetics and related compounds

Name Molecular
formula Other names Inhibitory potency, I50 (reference)

Tetracaine C15H24N2O2 Dicaine; 2-(dimethylamino)ethyl
p-(butylamino)benzoate;
dimethylaminoethyl
p-butyl-aminobenzoate;
p-butylaminobenzoyl-2-
dimethylaminoethanol

0.7–0.83 mM (76), 1.1 mM (406), 1.95 mM (343)
(bovine heart MF1-ATPase); 1.4 mM (76),
1.79 mM (343) (bovine heart SMP-ATPase)

Dibucaine C20H29N3O2 2-Butoxy-N-(2-(diethylamino)ethyl)
cinchoninamide; 2-butoxy-N-(2-
DEAE) quinoline-4-carboxamide;
cincainum; cinchocaine;
Dermacaine; dibucainum;
Nupercaine; Percamine; Sovcaine;
�-butyloxycinchonic acid-�-
diethylethylenediamine

0.19–0.5 mM (bovine heart MF1-ATPase) (76);
0.26 mM (bovine heart SMP-ATPase) (76);
29% inhibition at 1 mM (M. phlei F1-ATPase)
(4); 55.7% inhibition at 1 mM (M. phlei
membrane-bound ATPase) (4)

Procaine C13H20N2O2 2-DEAE-4-aminobenzoate; DEAE p-
aminobenzoate;
p-aminobenzoyldiethylaminoethanol;
procain; Spinocaine

1.8 mM (343), 15–17 mM (76) (bovine heart
MF1-ATPase); 8.4 mM (343), 9.5 mM (76)
(bovine heart SMP-ATPase)

Lidocaine C14H22N2O 2-(Diethylamino)-N-(2,6-
imethylphenyl) acetamide;
cappicaine; Duncaine; Esracaine;
Isicaine; Lidocaine; Maricaine;
xycaine; Xylocaine

12–16 mM (76), 18.2 mM (343) (bovine heart
MF1-ATPase); 10 mM (76), 22 mM (343)
(bovine heart SMP-ATPase)

Chlorpromazine C17H19N2SCl 2-Chloro-10-(3-(dimethylamino)propyl)
phenothiazine; Aminazin;
Aminazine; Chlor-Promanyl;
Chlorderazin; Chlorpromados;
Contomin; Elmarin; Esmind;
Fenactil; Largactil; Megaphen;
Novomazina; Proma; Phenactyl;
Promactil; Propaphenin; Prozil;
Psychozine; Sanopron; Thorazine;
Torazina; Wintermin

50 �M(54), 60 �M (343), 50–150 �M (221)
(bovine heart MF1-ATPase); 26 �M (76), 450
�M (343) (bovine heart SMP-ATPase); 150
�M (EF1-ATPase) (54); 30.8–56.0 �M (bovine
heart MF0F1-ATPase) (87); 6.5–12 �M
(bovine heart MF0F1, photoinactivation) (87)

Trifluoperazine C21H24F3N3S 10-(3-(4-Methyl-1-piperazinyl)propyl)-
2-(trifluoromethyl)phenothiazine;
trifluoromethylperazine

17.2–30.5 �M (bovine heart MF0F1-ATPase)
(87); 3.0–5.5 �M (bovine heart MF0F1,
photoinactivation) (87)

Procainamide C13H21N3O 4-Amino-N-(2-
(diethylamino)ethyl)benzamide

17–35 mM (76), 33 mM (343) (bovine heart
MF1-ATPase); 31 mM (bovine heart SMP-
ATPase) (76)

Propranolol C16H21NO2 1-((1-Methylethyl)amino)-3-(1-
naphthalenyloxy)-2-propanol

210 �M (343), 0.87–1.4 mM (76) (bovine heart
MF1-ATPase); 310 �M at 37°C and 880 �M
at 60°C (TF1-ATPase) (343); 660 �M (343),
840 �M (76) (bovine heart SMP-ATPase)
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analogous to TALAs. The main action of propanolol is to
block the action of epinephrine on both �1- and �2-adrenergic
receptors, but it also targets ATP synthase. Propranolol inhib-
its the mitochondrial ATPase activities of both membrane-
bound ATP synthase and isolated F1 (76, 343). It also inhibits
TF1 at both 37°C and 60°C with nearly the same effective
concentrations as that for inhibition of membrane-bound mi-
tochondrial ATP synthase (76, 343).

Other Organic Cations

Alkylguanidines (Fig. 7C) that possess an alkyl chain of
more than six carbons inhibit the ATPase activities of both
membrane-bound and isolated MF1 (92, 300). The inhibition
by octylguanidine, an alkylguanidine, is fully reversible, and the
octylguanidine prevents cold-induced dissociation of F1 (92).

1-Dansylamido-3-dimethypropylamine compounds are dan-
sylated organic cationic inhibitors (Fig. 7C). They inhibit both
ATP hydrolysis and ATP synthesis at similar concentrations
(116). The 1-dansylamido-3-dimethypropylamine compounds
inhibit the ATPase activities of both isolated and membrane-
bound F1 and exhibit more potent inhibitory effect on the
membrane-bound F1 than the isolated enzyme. The 1-dansyl-
amido-3-dimethypropylamine compounds with longer alkyl
groups (decyl and hexadecyl) have stronger inhibitory activity

than those with short groups (propyl and hexyl) (Table 13).
The binding site(s) of these compounds is not clarified but is
considered to be located on the � subunit (116).

Cetyltrimethylammonium inhibits the ATPase activities of
soluble and membrane-bound F1 in a noncompetitive manner
(31). The inhibition is reversible and can be reversed by dilu-
tion. The inhibition of membrane-bound F1 shows a more
complex pattern than that of isolated F1 with a sigmoidal
dependence on the concentration of cetyltrimethylammonium.
Also, cetyltrimethylammonium potentiates inhibition of mem-
brane-bound ATP synthase by oligomycin, and vice versa. It
lowers the Ki of the ATP synthase for oligomycin by about 1
order of magnitude. The inhibitory effect by cetyltrimethylam-
monium is believed to be due to an interaction of negatively
charged residues buried in a hydrophobic environment of F1.

Spermine and spermidine are polyamines distributed widely
in nature. Both activate the ATPase activity of membrane-
bound ATP synthase at low physiological concentrations (312,
374) and inhibit it at high concentrations (185). Spermine and
spermidine also inhibit the ATPase activity of isolated F1.
Inhibition by spermine (1 to 2 mM range) is much greater than
that by spermidine (2.5 to 5 mM range) and is uncompetitive
with variable concentrations of ATP in the presence of Mg2�

but competitive when both ATP and Mg2� concentrations are
variable. Spermine and spermidine bind to ATP, an event that

TABLE 13. Other organic cations

Name or abbreviation Molecular formula Other names Inhibitory potency (reference)

Octyl guanidine C9H21N3 300 �Ma (bovine heart SMP- and
MF1-ATPase) (92); 330 �Ma (rat
liver SMP-ATPase) (300)

1-Dansyl amido-3-
dimethypropylamine
compounds

C20H32N3O2S (n � 2)
C23H38N3O2S (n � 5)
C27H46N3O2S (n � 9)
C33H58N3O2S (n � 15)

1.4 mMa (n � 2), 0.4 mMa (n � 5),
7.9 �Ma and 4.4 �Mb (n � 9),
and 3.4 �Ma (n � 15) (bovine
heart SMP-ATPase) (116)

Cetyltrimethylammonium C19H42N Cetrimonium; cetrimonum;
cetyltrimethylammonium;
hexadecyltrimethylammonium;
trimethylhexadecylammonium

80 �Mb (bovine heart MF1-ATPase)
(31)

Spermine C7H19N3 4-Azaoctamethylenediamine Inhibitory effect at 1–2 mM range
(185); �55% inhibition at 2 mM
with 2 mM Mg2� (rat liver MF1-
ATPase) (185)

Spermidine C10H26N4 1,4-Bis(aminopropyl) butanediamine;
diaminopropyltetramethylenediamine

Inhibitory effect at 2.5–5 mM range
(rat liver MF1-ATPase) (185)

Bathophenan throline-metal
(Ru2�, Ni2�, Fe2�)
chelate

C24H16N2, 3C24H16N2 � Ru,
3C24H16N2 � Ni,
3C24H16N2 � Fe

1,10-Bathophenanthroline;
4,7-diphenyl-1,10-phenanthroline;
bathophenanthroline ruthenium(II);
Ru-Tdpa; tris(4,7-diphenyl-1,10-
phenanthroline)ruthenium (II); 4,7-
diphenyl-1,10-phenanthroline-ferrous
chelate; BPh3Fe2�

For BPh, almost complete inhibition
at 5 �M (bovine heart MF1)
(315); for BPh3 � Fe2�, 30 nmol/
mg proteinb (N. crassa SMP-
ATPase) (112); 100% inhibition
at 0.67 �M (bovine heart MF1-
ATPase) (63)

DPBP-ferrous chelate 3C22H16N2 � Fe 4,4-Diphenyl-2,2-bipyridine 85% inhibition at 0.67 �M and 99%
inhibition at 3.33 �M (bovine
heart MF1-ATPase) (63)

PDT-ferrous chelate 3C20H14N4 � Fe 3-(2-Pyridyl)-5,6-diphenyl-1,2,4-triazine 73% inhibition at 0.67 �M and 95%
inhibition at 3.33 �M (bovine
heart MF1-ATPase) (63)

Atrazine C8H14ClN5 6-Chloro-N-ethyl-N	-(propan-2-yl)-
1,3,5-triazine-2,4-diamine

Atrazine amino derivative C7H13ClN6 N-(Aminomethyl)-6-chloro-N	-(propan-
2-yl)-1,3,5-triazine-2,4-diamine

a I50.
b Ki.
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is inhibited by Mg2�. In fact, the inhibition of the ATPase
activities of membrane-bound and isolated F1 by polyamines is
considered to be due to their direct binding to ATP. In contrast
to their ATPase-inhibitory actions, spermine and spermidine
stimulate catalysis in SMP of both succinate-dependent ATP
synthesis and Pi-ATP exchange (185).

Octahedral bathophenanthroline (BPh3)-metal chelates in-
hibit MF1 in an uncoupler-reversible fashion (63–65, 315).
They bind to the ATP synthase � subunit and form a complex
with a stoichiometic ratio of 3 mol BPh3-Me2�/mol F1. Full
inhibition is observed with 0.67 �M of BPh3-Fe2� for MF1

from bovine heart (63). BPh3-Fe2� competes with aurovertin
for binding to the � subunit. The inhibition is relieved by
addition of uncouplers of oxidative phosphorylation via a pro-
cess that involves direct interaction of the uncouplers with the
inhibitory chelates. In fact, inhibitor-uncoupler adducts are
believed to be formed (63). BPh3-Ni2� and BPh3-Ru2� are
equally efficient inhibitors in the uncoupler-reversible inhibi-
tion of MF1 (63, 65). Moreover, BPh3-Fe2� protects F1 from
cold-induced dissociation and light-induced inactivation by
Rose bengal in an uncoupler-reversible manner (64). The re-
lated chelates 4,4-diphenyl-2,2-bipyridine and 3-(2-pyridyl)-
5,6-diphenyl-1,2,4-triazine with Fe2� also inhibit MF1, but with
weaker inhibitory potencies than BPh3-metal chelates (63).

Atrazine is a globally used triazine herbicide that inhibits
photosynthetic electron transport by binding the plastoquinone
binding protein in photosystem II (382). Atrazine also targets
ATP synthase from sperm and mitochondria, inhibiting the
ATP synthesis activity of ATP synthase (170). The amino de-
rivative of atrazine in which a terminal methyl group is re-
placed with an amino group is more potent in inhibition of
ATP synthesis.

SUBSTRATES AND SUBSTRATE ANALOGS

Phosphate Analogs

Arsenate mimics the �-phosphate of ATP. It inhibits ATP
synthesis at the active site of ATP synthase by competing with
phosphate (Fig. 8 and Table 14) (81, 264, 307). Arsenate blocks

the Pi7 H2O exchange and also the ATP7 Pi exchange cat-
alyzed by the ATP synthase (201) and is a more effective
inhibitor when the concentration of phosphate is low (307).
Thus, at 40 �M phosphate, 4.6 mM arsenate inhibits phos-
phate binding to bovine heart MF1 by 84%.

The phosphate analogs aluminum fluoride and beryllium
fluoride also bind to the catalytic sites of ATP synthase by
mimicking the �-phosphate of ATP (48, 107, 195, 243, 256).
The inhibition by these fluorides of aluminum and beryllium
involves ADP, Mg2�, and the fluoride ion (F�). In fact, no
inhibition occurs without fluoride. Inhibition also occurs when
IDP, GDP, or CDP replaces ADP (187, 243). Aluminum flu-
oride and beryllium fluoride inhibit F1 to the same extent via a
“quasi-irreversible” process (243). The inhibitory species rec-
ognized by F1 are AlF3 and AlF4

� for aluminum fluoride (48,
256) and BeF�, BeF2, and BeF3

� for beryllium fluoride (187,
195). In crystals of F1 grown with ADP and one of the inhib-
itors (AlF4

� or BeF3
�), two catalytic sites are occupied, one in

the �TP subunit and the other in the �DP subunit (195, 256).
Only one catalytic site, �DP, is occupied with aluminum fluo-
ride (AlF3) in the crystal grown in the presence of ADP,
adenylyl imidodiphosphate (AMP-PNP), and the inhibitor. No
bound aluminum fluoride or beryllium fluoride is found in the
� and �E subunits. Three basic residues located in the vicinity
of the �-phosphate site, �Lys162, �Arg189, and �Arg373, are
involved in coordination of the inhibitors and are considered to
provide charge stabilization (256).

Scandium fluoride (ScFx) binds to F1 of ATP synthase and
inhibits its ATPase activity (279). ScFx forms a tight-binding
inhibitory ternary complex with MgADP at the catalytic sites,
and the MgADP � ScFx complex acts as a transition state an-
alog. The inhibition by ScFx is Mg2� dependent, and ADP is
also required for strong inhibition. The inhibition is reversible,
and the ATPase activity is slowly regained in a single exponen-
tial reactivation process.

Two vanadate species, VO4
3� and VO3

�, inhibit F1-ATPase
(77, 210, 211, 344). Orthovanadate (VO4

3�) binds to the cat-
alytic sites and forms a transition-like state MgADP � Vi-F1

complex in the presence of ADP and Mg2�. The inhibition of
rat liver MF1 by orthovanadate is reversible, with a restoration
of original activity to a level close to 90% (210, 211), whereas
EF1 is resistant to orthovanadate (6). In the presence of UV
and O2, the cleavage of the � subunit from rat liver MF1 occurs
at position Ala158 in the P-loop (210, 211). In the crystal
structure of F1 with vanadate from the same source, one van-
adate ion is found in each catalytic site of the � subunit (77).
The vanadate in this transition-like state is located in a charged
pocket surrounded by �Lys162, �Glu188, �Arg189, and
�Arg260 and is complexed with ADP and Mg2�. Moreover,
the vanadate is positioned closer to P-loop �Ala158 than is
phosphate in the F1-ADP,Pi ground state structure. It has been
proposed that the positioning of �Ala158 closer to the �-phos-
phate of ATP in the transition state may help facilitate the
dehydration of ADP and Pi (to give water) and therefore
facilitate ATP synthesis (77).

Magnesium fluoride inhibits F1 by acting also as an apparent
transition state analog in combination with MgADP (5). Like
vanadate, it mimics the �-phosphate of ATP in the transition
state. The inhibition is slow and reversible and requires ADP.

Sulfite is known as an effective activator of F1-ATPase. How-

FIG. 8. Structures of phosphate analogs.
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ever, it can also play a role as an inhibitor of the reversal of
ATP synthase as a mixed-type inhibitor in the presence of ADP
and phosphate (Fig. 8 and Table 14). The sulfite diminishes the
rate of ATP synthesis of Paracoccus denitrificans with an I50 of
3.5 mM (295). The mechanism of sulfite inhibition is uncertain,
but it has been suggested that the action of inhibitory ADP is
involved in the binding of nucleotides to noncatalytic sites
(249), and the binding of sulfite to the noncatalytic sites in-
creases the Ki for inhibitory ADP (295, 327).

Thiophosphate is a group of compounds in which a phos-
phorus atom is bonded to one or more sulfur and zero or more
oxygen atoms, and it is found in a number of insecticides. A
thiophosphate, SPO3

3�, has been shown to inhibit ATP syn-
thesis in mitochondria (254, 363). It inhibits the Pi7 ATP
exchange in SMP from bovine heart mitochondria competi-
tively and also inhibits ATP synthesis noncompetitively with
respect to ADP without a change in Km for ADP (363). In
contrast, in pea SMP, thiophosphate decreases the Km of the
enzyme for ADP (254).

Azide inhibits the ATPase activity of F1 from mitochondria,
bacteria, and chloroplasts (25, 46, 126, 274, 278, 287, 391, 412).
Azide has no inhibitory effect on ATP synthesis (25). The
inhibition by azide is noncompetitive (287, 391) and occurs
only in the presence of ADP and ATP (274). The binding of
inhibitory azide requires prior binding of both ADP and Mg2�

(160, 278). Azide binds to the catalytic site in �DP of F1 and
resides adjacent to the �-phosphate of ADP, mimicking the
nonbridging oxygen atom of the �-phosphate (46). The binding

of azide in the �DP catalytic site is very tight, and the azide is
closely associated via hydrogen bonds with �Lys162 in the
P-loop and �Arg373 (46). The inhibition is dependent on ATP
concentration (274) and is reversed by addition of phosphate,
possibly by competing for the azide binding site (262, 274).

Azido-2-nitrophenyl phosphate (ANPP) is a photoaffinity
phosphate analog in which the 4-azido-2-nitrophenyl group is
attached to phosphate (Fig. 8 and Table 14). ANPP inhibits F1

as a competitive inhibitor in the dark by specifically targeting
�-phosphate binding sites within the nucleotide binding pock-
ets on the � subunit of isolated F1 or on both � and � subunits
of membrane-bound F0F1 (154, 227). However, upon photoir-
radiation with visible light, ANPP inactivates the enzyme by
binding covalently to these subunits. This occurs most fre-
quently on �Tyr 311, together with �Ile304 and �Gln308 in
MF1, and on the analogous �Tyr 328, together with �Val329
and �Pro330 in CF1 (133, 258). Phosphate added before
photoirradiation protects the photoinactivation by ANPP. The
stoichiometry for full photoinactivation of F1 is approximately
1 mol of ANPP/mol of CF1 (321).

Divalent Metal Ions

Divalent metal ions are usually activators of F1, but in their
free form, they can also function as inhibitors at high concen-
trations (47, 98, 174, 278, 291, 365). Free Mg2� acts as a linear
competitive inhibitor (98, 365). The inhibition of CF1 by free
Mg2� requires the presence of a tightly bound ADP at the

TABLE 14. Phosphate analogs

Name or abbreviation Molecular formula Inhibitory potency (reference)

Arsenate AsO4 84% inhibition at 4.6 mM at low conc of phosphate (40 �M)
(bovine heart MF1-ATPase) (307)

Aluminum fluoride AlF3 and AlF4
� 10 �Ma of AlCl3 in the presence of 5 mM NaF and 100 �M

ADP (bovine heart MF1-ATPase) (243)
Beryllium fluoride BeF�, BeF2, and BeF3

� 10 �Ma of BeCl2 in the presence of 5 mM NaF and 100 �M
ADP (bovine heart MF1-ATPase) (243); 20 �Ma of BeCl2
in the presence of 2.5 mM NaF with 80 �M ADP with 50
mM Cl� (45 min incubation), 20 mM SO4

2� (14 min
incubation), or 20 mM SO3

� (2 min incubation) (bovine
heart MF1-ATPase) (187)

Scandium fluoride ScFx 60 �Ma and 95% inhibition at 0.3 mM in the presence of 2.5
mM MgSO4, 1 mM ADP, and 10 mM NaF (279)

Vanadate VO4
3� and VO3

� VO4
3�, 50% inhibition in �45 min and �80% inhibition in

�2 h at 200 �M in the presence of 200 �M each of
MgCl2 and ADP (rat liver MF1-ATPase) (210); VO3

�,
30% inhibition at 300 �M (V. parahaemolyticus F1-
ATPase) (344)

Magnesium fluoride MgFx 50% inhibition at 1mM NaADP, 1 mM NaF, and 11–12 mM
MgCl2 with 5–12 h preincubation (EF1-ATPase) (5)

Sulfite SO3
2� 3.5 mMa and maximal 70% at 10 mM (P. denitrificans F0F1,

ATP synthesis) (295)
Thiophosphate SPO3

3� Km, 1.5 �M in the presence of 1 mM from 4.5 �M in the
absence (pea SMP-ATP synthesis) (254)

Azide N3
� �10�5 Mb (bovine heart MF1-ATPase) (412); �25 �Mb

(EF1-ATPase) (287); 71% inhibition at 1 mM (V.
parahaemolyticus F1-ATPase) (344); �90% inhibition at
0.5 mM (EF1-ATPase) (287); 55% inhibition at 500 �M
(C. thermoaceticum F1-ATPase) (190)

ANPP C6H4N4O6P 25 �Ma (spinach CF1-ATPase, photoinactivation) (321); 60
�Mb in the dark (bovine heart MF1-ATPase) (227)

a I50.
b Ki.
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catalytic site (160, 278). The Ki values are variable, and CF1

and BF1 are about 2 orders of magnitude more sensitive to the
inhibition by free Mg2� than is MF1. Free Mn2� and Ca2� ions
also inhibit F1-ATPase in a competitive manner and are more
effective than free Mg2� in inhibition of CF1 (Table 15) (174).

Purine Nucleotides and Nucleotide Analogs

Excess free ATP is also an inhibitor of ATP synthase (Tables 16
and 17 and Fig. 9A) (98, 291, 365). Inhibition of ATPase
activity of F1 by free ATP can be competitive (in the photo-
synthetic bacterium Rhodospirillum rubrum [291], biphasic (in
Phycomyces blakesleeanus [98], or second order/parabolic (in
ox heart mitochondria (365).

ADP is a substrate for F1, but preincubation of F1 with ADP
and Mg2� induces hysteretic inhibition (32, 102, 261). The
inhibition arises when medium Mg2� combines with F1 to
which ADP is bound to only a single catalytic site in the
absence of bound Pi. The onset of the inhibition is rather slow
(seconds to minutes). The Mg2�ADP-induced inhibition can
be slowly and partially reversed by addition of ATP in the
absence of Mg2� (272), and the recovery of ATPase activity
requires the binding of ATP at a noncatalytic site. The recov-
ery is promoted by anions such as bicarbonate and sulfite (272,
412). The inhibition can arise from the medium ADP, but ADP
produced at the catalytic site by ATP hydrolysis can also start
Mg2�ADP-induced inhibition. F1 from chloroplasts is more
readily inhibited than F1 from mitochondria, whereas EF1 is
not susceptible to Mg2�ADP-induced inhibition under condi-
tions where Mg2� is not in huge excess (6, 106). The
Mg2�ADP-induced inhibition of F1 also occurs in the intact
ATP synthase with no or low proton motive force. However,
sufficient proton motive force can drive the ATP synthase to
remove the inhibitory Mg2�ADP without altering net ATP
synthesis (47).

GTP and formycin 5	-triphosphate (FTP) bind to empty
noncatalytic sites on CF1 in the presence of Mg2� and inhibit
its ATPase activity (159). Binding of GTP or FTP to two sites
causes more inhibition than binding to one site, and the GTP
has stronger inhibitory potency than FTP. With GTP or FTP
bound at two noncatalytic sites, the GTP inhibits the ATPase
activity about 90%, and the FTP about 80%. After a 15-min
incubation period, about 50% maximal inhibition is achieved
with 5 to 10 �M GTP or FTP for spinach CF1-ATPase.

2	,3	-O-(2,4,6-trinitrophenyl) ATP (TNP-ATP) and TNP-
ADP are ribose-modified chromophoric and fluorescent ana-

logs of ATP and ADP in which a trinitrophenyl group is at-
tached to the 2	 and 3	 hydroxyls of ribose (Fig. 9A). These
compounds have been used widely for various assays of ATP
binding to proteins. Both compounds are potent inhibitors of
F1 with high affinity, and the TNP-ATP is hydrolyzable by F1

from mitochondria, chloroplasts, and bacteria (157, 219, 273,
368, 429). The inhibition of ATP hydrolysis by TNP-ATP or
TNP-ADP has been reported to be competitive (157) or bi-
phasic (277). These nucleotide analogs bind to both catalytic
and noncatalytic sites of F1. Their binding is noncooperative at
the three noncatalytic sites and cooperative at the three cata-
lytic sites (429).

2-Azido-TNP-ATP, a 2-azido derivative of TNP-ATP, inhib-
its F1 catalyzed ATP hydrolysis biphasically (Fig. 9B and Table
18) (276). Bicarbonate decreases the degree of inhibition by
2-azido-TNP-ATP. The Km and Vmax for 2-azido-TNP-ATP
hydrolysis are similar to those for TNP-ATP hydrolysis. Upon
UV illumination of the F1-ATPase complex with the bound
2-azido-TNP-ATP, it is incorporated into the complex co-
valently and inactivates the F1-ATPase irreversibly.

Linear-benzoadenosine diphosphate (lin-benzo-ADP) is a
fluorescent adenine-modified ADP analog in which the ade-
nine ring is laterally extended by the insertion of a benzene
ring between the pyrimidine and imidazole ring (Fig. 9A) (199,
428). Lin-benzo-ADP binds to all six nucleotide binding sites.
The affinities for lin-benzo-ADP to three � subunits and one �
subunit of MF1 from bovine heart are low (Kd � 1 to 2 �M),
whereas the affinities for the other two � subunits are very high
(Kd 
10 nM) (428). Inhibition by lin-benzo-ADP is competi-
tive and has complex kinetics of inhibition. Lin-benzo-ADP is
fluorescent, and its fluorescence spectrum is extensively
quenched by adding F1. As expected, this fluorescence quench-
ing is reversed by adding ADP (199).

5	,5	-Diadenosine oligophosphates (APxA) are compounds
which have a chain of phosphoryl groups linking two adenosine
moieties. The APxA that have a long chain of phosphoryl
groups (AP4A, AP5A, and AP6A) has been shown to inhibit
the ATP hydrolysis activity of MF1, whereas compounds that
have a shorter chain (AP2A and AP3A) showed stimulatory
effects (417). The inhibition by AP4A, AP5A, and AP6A re-
quired the presence of at least one vacant noncatalytic site, and
the maximal level of inhibition was 80%. AP4A was the most
potent, and its stoichiometry for maximal inhibition was near 1
mol/mol of F1. In contrast, a contradictory result has also been
reported in the inhibition of the same enzyme by AP5A, and no
inhibition was observed up to 100 �M (325).

AMP-PNP is a nonhydrolyzable ATP analog in which the
terminal bridge oxygen of the triphosphate moiety is replaced
by an NH group (444). AMP-PNP has been used widely in
kinetic studies of F1 and has been found to be a potent com-
petitive inhibitor in ATPase assays of either the soluble or
membrane-bound enzyme from bovine heart (37, 147, 306,
361) However, AMP-PNP is reported to be noncompetitive in
ATPase assays with membrane-bound rat liver F1 (361). The Ki

values reported are variable (14 nM to 0.5 �M) (37, 84, 255,
306, 361). AMP-PNP has no effect on the ATP synthesis ac-
tivity of ATP synthase, although it is a potent inhibitor of
F1-catalyzed ATP hydrolysis (302, 306). It binds to both cata-
lytic and noncatalytic sites, and when it is bound to the latter

TABLE 15. Divalent metal ions

Name Inhibitory potency (reference)

Inhibitory free Mg2� ..................2.8 mMa (P. blakesleeanus MF1-
ATPase) (98); 3 mMa (ox heart
MF1-ATPase) (365); 20 �Ma

(lettuce CF1-ATPase) (174); 7
�Ma (R. rubrum F1-ATPase)
(291); 10–15 �Mb and 4 �Mb

(spinach CF1-ATPase) (278)
Inhibitory free Mn2� ..................5 �Ma (lettuce CF1-ATPase) (174)
Inhibitory free Ca2� ...................5–7 �Ma (lettuce CF1-ATPase) (174)

a Ki.
b Kd.
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TABLE 16. Properties of purine nucleotides and nucleotide analogs

Name or abbreviation Molecular formula Source Other names

Excess free ATP C10H16N5O13P3 Natural Adenosine triphosphate; adenosine 5	-triphosphate
ADP C10H15N5O10P2 Natural Adenosine diphosphate; adenosine 5	-diphosphate
GTP C10H16N5O14P3 Natural Guanosine triphosphate; guanosine 5	-triphosphate
FTP C10H16N5O13P3 Synthetic Formycin triphosphate; formycin 5	-triphosphate;

formycin A 5	-triphosphate
TNP-ATP C16H17N8O19P3 Synthetic; fluorescent 2	,3	-O-(2,4,6-Trinitrophenyl) adenosine

5	-triphosphate
TNP-ADP C16H15N8O16P2 Synthetic; fluorescent 2	,3	-O-(2,4,6-Trinitrophenyl) adenosine

5	-triphosphate
TNP-Ado C16H13N8O10 Synthetic; fluorescent (2	,3	)-O-(2,4,6-Trinitrocyclohexadienylidine)

adenosine
Lin-benzo-ADP C14H17N5O10P2 Synthetic; fluorescent Linear-benzoadenosine diphosphate
AP4A C20H28N10O19P4 Natural extracellular

mediator
Diadenosine tetraphosphate; 5	,5			-diadenosine

tetraphosphate
AP5A C20H14N10O22P5 Natural extracellular

mediator
Diadenosine pentaphosphate

AP6A C20H30N10O25P6 Natural extracellular
mediator

Diadenosine hexaphosphate; diadenosine
5	,5				-P1,P6-hexaphosphate

AMP-PNP C10H17N6O12P3 Synthetic Adenylyl imidodiphosphate; p�NHppA;
�-imino-ATP

GMP-PNP C10H17N6O13P3 Synthetic 5	-Guanylyl imidodiphosphate; p�NHppG
IMP-PNP C10H16N5O13P3 Synthetic Inosine-5	-�(�,�)-imidotriphosphate
AMP(CH2)P C11H17N5O9P2 Synthetic Adenosine 5	-methylenediphosphate; adenosine-5	-

(�,�-methylene)-diphosphate; �,�-methylene
ADP

RhATP C10H23N5O16P3Rh
(tridentate RhATP)

Synthetic Bidentate RhATP, bidentate tetraaquarhodium-
adenosine 5	-triphosphate �Rh(H2O)4ATP;
tridentate RhATP, tridentate triaquarhodium-
adenosine 5	-triphosphate �Rh(H2O)3ATP

CrATP or Cr(NH3)4ATP C10H26CrN5O17P3
(bidentate CrATP)

Synthetic Monodentate CrATP, monodentate
pentaaquachromium-adenosine 5	-triphosphate
�Cr(H2O)5ATP; monodentate Cr(NH3)4ATP,
Monodentate tetraaminemonoaquachromium-
adenosine 5	-triphosphate
�Cr(NH3)4(H2O)ATP; bidentate CrATP,
bidentate tetraaquachromium-adenosine
5	-triphosphate �Cr(H2O)4ATP; bidentate
Cr(NH3)4ATP, bidentate tetraaminechromium-
adenosine 5	-triphosphate; bidentate
Cr(NH3)2ATP, bidentate
biaminebiaquachromium-adenosine 5	-
triphosphate �Cr(NH3)2(H2O)2ATP

Co(NH3)4ATP C10H34CoN9O13P3 Synthetic Bidentate tetraaminecobalt-adenosine
5	-triphosphate; bidentate cobalt(III)tetraamine-
adenosine 5	-triphosphate

3	-O-Acetyl-ATP C16H17N8O19P3 Synthetic Acetyl adenosine triphosphate
3	-O-Acetyl-ADP C16H16N8O16P2 Synthetic Acetyl adenosine diphosphate
3	-O-Caproyl-ADP C16H25N5O11P2 Synthetic Caproyl adenosine diphosphate
3	-O-Enanthyl-ADP C17H27N5O11P2 Synthetic Enanthyl adenosine diphosphate
3	-O-Caprylyl-ADP C18H29N5O11P2 Synthetic Caprylyl adenosine diphosphate
F-ADP/DMAN-ADP C23H23N6O11P2 Synthetic; fluorescent 3	-O-�1-(5-Dimethylamino)-naphthoyladenosine

diphosphate; 3	-O-(5-dimethylaminonaphthoyl-
1)-adenosine diphosphate

F-ATP C23H25N6O14P3 Synthetic; fluorescent 3	-O-�1-(5-Dimethylamino)-naphthoyladenosine
triphosphate; 3	-O-(5-dimethylaminonaphthoyl-
1)-adenosine triphosphate

3	-O-(1-Naphthoyl)-ADP/N-ADP C21H21N5O11P2 Synthetic; fluorescent 3	-O-(Naphthoyl-1)adenosine diphosphate;
3-NP-ADP

3	-O-(1-Naphthoyl)-ATP C21H22N5O14P3 Synthetic; fluorescent 3	-O-(Naphthoyl-1)adenosine triphosphate
3	-O-(2-Naphthoyl)-ADP C21H22N5O14P3 Synthetic 3	-O-(2-Naphthoyl)-adenosine 5	-diphosphate
BzATP C24H24N5O15P3 Synthetic; photoreactive 3	-O-(4-Benzoyl) benzoyl ATP; 3	-O-(4-

benzoyl)benzoyladenosine 5	-triphosphate
BzADP C24H23N5O12P2 Synthetic; photoreactive 3	-O-(4-Benzoyl) benzoyl ADP; 3	-O-(4-

benzoyl)benzoyladenosine 5	-diphosphate
t-Butylacetyl-ADP C16H25N5O11P2 Synthetic tert-Butylacetyl-adenosine 5	-diphosphate

Continued on following page
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sites, it induces hysteretic inhibition to the same extent as ADP
(34, 37).

Guanylyl imidodiphosphate (GMP-PNP) and inosine-5	-
[(�,�)-imido]triphosphate (IMP-PNP) are analogs of GTP and
ITP, respectively, in which the bridge oxygen atom between the
� and � phosphorus atoms is replaced by an NH group. The
inhibition by GMP-PNP versus GTP and ITP is competitive
(361), whereas inhibition versus ATP is competitive (37) or
mixed (361). Unlike AMP-PNP, GMP-PNP shows no induc-
tion of hysteretic inhibition (34). IMP-PNP inhibits ITP hydro-
lysis potently, whereas it inhibits ATP hydrolysis only at low
concentrations of ATP below 100 �M (362). At high concen-
trations of ATP, IMP-PNP stimulates the rate of ATP hydro-
lysis. In contrast, the stimulation of ATP hydrolysis by IMP-
PNP is not seen in the presence of bicarbonate, and IMP-PNP
inhibits ATP hydrolysis competitively.

Adenosine 5	-methylenediphosphate is an analog of ADP in
which the bridge oxygen atom between the � and � phosphorus
atoms is replaced by a CH2 group. Adenosine 5	-methylene-
diphosphate inhibits ATP synthesis competitively with respect
to ADP (254, 363) and inhibits Pi7 ATP exchange uncompeti-
tively (363).

Exchange-inert metal-nucleotide complexes are stable, inert
octahedral complexes of Cr(III), Co(III), or Rh(III) with ATP
and ADP (383). The exchange-inert metal-nucleotide com-
plexes inhibit ATP synthase by binding to F1 (44, 158, 383, 384,
432). Chromium complexes of ATP and ADP, i.e., �,�-
CrADP, �,�-CrATP, and �,�,�-CrATP, are competitive inhib-
itors of MF1 with respect to MgATP (383, 432). �,�-CrATP

and �,�,�-CrATP inhibit F1 by binding at the catalytic site and
�,�-CrATP by binding at a regulatory site (432). The binding
sites show no significant selectivity for the steric arrangement
of the chromium complexes. �,�-CrATP and �,�,�-CrATP
bind to the catalytic site with the same affinity, although they
have different steric arrangements of the chromium (�,�-
CrATP with monocyclic coordination at the metal ion and
�,�,�-CrATP with bicyclic coordination). Two diastereomers
of �,�-CrADP (� and � isomers) also exert similar inhibitory
effects (432). Monodentate Cr(NH3)4ATP, bidentate/triden-
tate RhATP, bidentate Cr(NH3)4ATP, and bidentate Co
(NH3)4ATP are mixed noncompetitive inhibitors of F1 (44,
158, 383, 384). All the amine and aqua exchange-inert metal-
nucleotide complexes are mutually exclusive during ATP hy-
drolysis and appear to bind the same site(s) (383).

3	-acetyl ATP and 3	-acetyl ADP are monoacetylated ade-
nine nucleotides in which an acetyl group is attached to the 3	
hydroxyl group of ribose. 3	-Acetyl ATP and 3	-acetyl ADP
inhibit the ATPase activity of MF1 in a competitive fashion
with ATP and ADP, respectively (355, 394). They bind to
catalytic sites, but no reactions occur; i.e., the 3	-acetyl ADP is
not phosphorylated, and the 3	-acetyl ATP is not hydrolyzed
(355).

3	-O-[1-(5-dimethylamino)-naphthoyl]ADP (F-ADP or
DMAN-ADP) and 3	-O-(1-naphthoyl)ADP (N-ADP) are flu-
orescent analogs of ADP in which 5-dimethyl amino-naphthoyl
and naphthoyl groups are attached to the 3	 hydroxyls of ri-
bose, respectively (356, 397, 427). Both inhibitors are potent
competitive inhibitors of both ATP hydrolysis and ATP syn-

TABLE 16—Continued

Name or abbreviation Molecular formula Source Other names

3	-O-Phenylacetyl-ADP C18H21N5O11P2 Synthetic 3	-O-Phenylacetyl-adenosine 5	-diphosphate
3	-O-Phenylbutyryl-ADP C20H25N5O11P2 Synthetic 3	-O-Phenylbutyryl-adenosine 5	-diphosphate
3	-O-Benzoyl-ADP C17H19N5O11P2 Synthetic 3	-O-Benzoyl-ADP
3	-O-�N-(2-Nitrophenyl)-

�-aminobutyryl-ADP
C20H25N7O13P2 Synthetic 3	-O-�N-2-Nitrophenyl-�-aminobutyryl-adenosine

5	-diphosphate
3	-O-�N-(4-Nitrophenyl)-

��aminobutyryl-ADP
C20H25N7O13P2 Synthetic 3	-O-�N-(4-Nitrophenyl)-�-aminobutyryl-adenosine

5	-diphosphate
3	-O-(1-Naphthylacetyl)-ADP C22H23N5O11P2 Synthetic 3	-O-(1-Naphthylacetyl)-adenosine 5	-diphosphate
3	-O-(2-Naphthyl acetyl)-ADP C22H23N5O11P2 Synthetic 3	-O-(2-Naphthylacetyl)-adenosine 5	-diphosphate
3	-O-(1-Anthranoyl)-ADP C25H23N5O11P2 Synthetic 3	-O-(1-Anthranoyl)-adenosine 5	-diphosphate
3	-O-(9-Anthranoyl)-ADP C25H23N5O11P2 Synthetic 3	-O-(9-Anthranoyl)-adenosine 5	-diphosphate
FSBI C17H15FN4O8S Synthetic 5	-p-Fluorosulfonylbenzoylinosine; 5	-4-Fsbi
FSBA C17H16FN5O7S Synthetic 5	-p-Fluorosulfonylbenzoyladenosine;

5	-(4-(fluorosulfonyl)benzoyl)adenosine; 5-Fsba
FSBεA C19H16FN5O7S Synthetic 5	-p-Fluorosulfonylbenzoylethenoadenosine; 5	-(4-

fluorosulfonylbenzoyl)-1,N(6)-ethenoadenosine;
FSB epsilon A; Fsbn-ethenoadenosine

AP2-PL C18H22N6O12P2 Synthetic Adenosine diphosphopyridoxal; PLP-AMP; ADP-
pyridoxal; pyridoxal 5	-diphospho-5	-adenosine;
5	-adenosine-5	-diphosphopyridoxal

AP3-PL C18H23N6O15P3 Synthetic Adenosine triphosphopyridoxal; adenosine 5	-
(tetrahydrogen triphosphate), mono((4-formyl-5-
hydroxy-6-methyl-3-pyridinyl)methyl) ester

AP4-PL C18H24N6O18P4 Synthetic Adenosine tetraphosphopyridoxal; adenosine
tetraphosphate pyridoxal

oATP C10H14N5O13P3 Synthetic 2	,3	-Dialdehyde of ATP; dial-ATP
oADP C10H13N5O10P2 Synthetic 2	,3	-Dialdehyde of ADP
oAMP C10H12N5O7P Synthetic 2	,3	-Dialdehyde of AMP
Cibacron blue C29H17N7O11S3Cl Synthetic; protein

synthesis inhibitor
BzAF C34H21NO7 Synthetic; photoreactive 4-Benzoyl(benzoyl)-1-amidofluorescein
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TABLE 17. Inhibitory potencies of purine nucleotides and nucleotide analogs

Name or abbreviation Inhibitory potency (reference)

Excess free ATP..........................................................1 Mg2�/8–10 ATPa (R. rubrum F1-ATPase) (291); 1 mMb (R. rubrum F1-ATPase) (291); 5% inhibition at 12 mM
(P. blakesleeanus F1-ATPase) (98)

ADP..............................................................................15–17 �Mb (bovine heart MF1-ATPase) (272, 362); 8.6–9 �Mb (rat liver SMP-ATPase) (263, 272)
GTP ..............................................................................5–10 �Ma for 15 min (spinach CF1-ATPase) (159)
FTP...............................................................................5–10 �Ma for 15 min (spinach CF1-ATPase) (159)
TNP-ATP.....................................................................100 nMa (bovine heart MF1-ATPase) (277); 5.5 nMb (157), 25 nMb (214) (bovine heart MF1-ATPase); 21 nMb

(bovine heart SMP-ATPase) (157); noncatalytic sites 0.2 �Mc and catalytic sites 
 0.001, 0.023, 1.39 �Mc

(EF1-ATPase) (429)
TNP-ADP ....................................................................15–20 nMa (bovine heart MF1-ATPase) (277); 8 nMb (214), 10 nMb (157) (bovine heart MF1-ATPase); 1.3 �Mb

(bovine heart SMP-ATP synthesis) (157); noncatalytic sites 6.5 �Mc and catalytic sites 0.008, 1.3, 1.3 �Mc

(EF1-ATPase) (429)
TNP-Ado......................................................................33 �Mb (bovine heart MF1-ATPase) (214)
Lin-benzo-ADP ...........................................................16 �Mb (bovine heart MF1-ATPase) (199); 0.2 �Mc (EF1-ATPase) (424); 
10 nMc and 1–2 �Mc (bovine heart

MF1-ATPase) (428)
AP4A ............................................................................18 �Ma (bovine heart MF1-ATPase) (417)
AP5A ............................................................................�60% inhibition at 520 �M in 10 min (bovine heart MF1-ATPase) (417); no inhibition up to 100 �M (bovine

heart MF1-ATPase) (325)
AP6A ............................................................................�80% inhibition at 520 �M in 80 min (bovine heart MF1-ATPase) (417)
AMP-PNP....................................................................0.5 �Mb (37), 0.33 �Mb (306), 0.32 �Mb (361), 14 nMb (84) (bovine heart MF1-ATPase); 0.16 �Mb (bovine

heart SMP-ATPase) (306); 0.92 �Mb (255), 0.3 �Mb (361) (rat liver MF1-ATPase); 1.3 �Mb (rat liver SMP-
ATPase) (255); 0.6b (EF1-ATPase) (436)

GMP-PNP....................................................................12.3 �Mb (bovine heart MF1-ATPase) (37); 300 �Mb (rat liver MF1-ATPase) (361)
IMP-PNP......................................................................105 �Mb with bicarbonate (bovine heart MF1-ATPase) (362)
AMP(CH2)P ................................................................Km, 2.8 �M in the presence of 1 mM inhibitor from 0.85 �M in its absence (pea SMP-ATP synthesis) (254)
RhATP .........................................................................Bi- and tridentate RhATP, 300 �Mb (bovine heart MF1-ATPase) (383)
CrATP or Cr(NH3)4ATP...........................................Monodentate CrATP, 78 �Mb (bovine heart MF1-ATPase) (383); monodentate Cr(NH3)4ATP, 500 �Mb (bovine

heart MF1-ATPase) (383); bidentate CrATP, 1 mMb (bovine heart MF1-ATPase) (383) and 170 �Mb (S.
cerevisiae MF1-ATPase) (432); bidentate Cr(NH3)4ATP, 100 �Mb (bovine heart MF1-ATPase) (383);
tridentate CrATP, 150 �Mb (S. cerevisiae MF1-ATPase) (432)

Co(NH3)4ATP.............................................................Bidentate Co(NH3)4ATP, 400 �Mb (bovine heart MF1-ATPase) (384)
3	-O-Acetyl-ATP .........................................................400 nMb (bovine heart MF1-ATPase) (394)
3	-O-Acetyl-ADP ........................................................55.3–85 �Ma (bovine heart SMP, oxidative phosphorylation) (355, 356)
3	-O-Caproyl-ADP......................................................1.7 �Ma (bovine heart SMP-oxidative phosphorylation) (355)
3	-O-Enanthyl-ADP....................................................2.7 �Ma (bovine heart SMP-oxidative phosphorylation) (355)
3	-O-Caprylyl-ADP .....................................................1.7 �Ma (bovine heart SMP-oxidative phosphorylation) (355)
DMAN-ADP/F-ADP..................................................0.25 �Ma (bovine heart SMP-oxidative phosphorylation) (356); 40 nMb (bovine heart SMP-oxidative

phosphorylation) (356); 9.8 �Mb (bovine heart SMP-uncoupled ATPase) (356); 50 nMc (bovine heart MF1-
ATPase) (397)

F-ATP...........................................................................2.1 �Ma (bovine heart SMP-oxidative phosphorylation) (356); 0.3 �Mb (bovine heart SMP, oxidative
phosphorylation) (356); 12–27 �Mb (bovine heart SMP-uncoupled ATPase) (356)

3	-O-(1-Naphthoyl)-ADP/N-ADP.............................300–350 nMa (bovine heart SMP-oxidative phosphorylation) (355, 356); 4.6 �Mb (bovine MF1-ATPase) (240); 9
�Mb (bovine heart SMP-ATPase) (240); 48 nMb (bovine heart SMP-oxidative phosphorylation) (355); 20–50
nMc (bovine MF1-ATPase) (397)

3	-O-(1-Naphthoyl)-ATP............................................2.0 �Ma (bovine heart SMP-oxidative phosphorylation) (356)
3	-O-(2-Naphthoyl)-ADP ...........................................5.0 �Ma (bovine heart SMP-oxidative phosphorylation) (356)
BzATP..........................................................................0.85 �Mb (bovine heart MF1-ATPase) (3); �6 �Mb (TF1-ATPase) (8); 1.6 �Mc (bovine heart MF1-ATPase) (3)
BzADP .........................................................................0.72 �Mb (bovine heart MF1-ATPase) (3)
t-butylacetyl-ADP........................................................1.5 �Ma (bovine heart SMP-oxidative phosphorylation) (355)
3	-O-Phenylacetyl-ADP..............................................3.2–3.6 �Ma (bovine heart SMP-oxidative phosphorylation) (355, 356)
3	-O-Phenylbutyryl-ADP............................................1.3–4.6 �Ma (bovine heart SMP-oxidative phosphorylation) (355, 356); 0.2 �Mb (bovine heart SMP-oxidative

phosphorylation) (355)
3	-O-Benzoyl-ADP......................................................6.0 �Ma (bovine heart SMP-oxidative phosphorylation) (355, 356)
3	-O-�N-(2-Nitrophenyl)-��

aminobutyryl-ADP.................................................0.55 �Ma (bovine heart SMP-oxidative phosphorylation) (356)
3	-O-�N-(4-Nitrophenyl)-��

aminobutyryl-ADP.................................................0.76 �Ma (bovine heart SMP-oxidative phosphorylation) (356)
3	-O-(1-Naphthylacetyl)-ADP ...................................0.8 �Ma (bovine heart SMP-oxidative phosphorylation) (356)
3	-O-(2-Naphthylacetyl)-ADP ...................................0.8 �Ma (bovine heart SMP-oxidative phosphorylation) (356)
3	-O-(1-Anthranoyl)-ADP..........................................0.56 �Ma (bovine heart SMP-oxidative phosphorylation) (356)
3	-O-(9-Anthranoyl)-ADP..........................................5.9 �Ma (bovine heart SMP-oxidative phosphorylation) (355, 356, 397); 1.1 �Mb (bovine heart SMP-oxidative

phosphorylation) (355)
FSBI..............................................................................0.5 mMc for reversible binding (bovine heart MF1-ATPase) (49)
FSBA ............................................................................45% (1 h) and 65% (2 h) inhibition at 0.8 mM (bovine heart SMP-ATPase) (51); 0.23 mMc for reversible

binding (pig heart MF1-ATPase) (101)
FSB�A ..........................................................................250 �Mc (bovine heart MF1-ATPase) (414)
AP2-PL .........................................................................�150 �Mc (� subunit of EF1-ATPase) (326); 30% inhibition at 50 �M (EF1-ATPase) (288)
AP3-PL .........................................................................18 �Ma (EF1-ATPase) (288); 2.5 �Ma with Mg2� and 10 �Ma without Mg2� (EF1-ATPase) (184)
AP4-PL .........................................................................18 �Ma (EF1-ATPase) (288)
oATP ............................................................................10 mMb (M. phlei F1-ATPase) (219); 1.05 mol/mol of ATPasea (ox heart MF1-ATPase) (239); 40% inhibition at

1 mol/mol ATPase without ADP and 60 min incubation (ox heart MF1-ATPase) (239)
oADP............................................................................80 �Mc (bovine heart MF1-ATPase) (217)
oAMP ...........................................................................90% inhibition at 3 mM (bovine heart MF1-ATPase) (95)
Cibacron blue ..............................................................600 �Ma (rat liver MF1-ATPase) (28)
BzAF ............................................................................50 �Mb in the dark (bovine heart MF1-ATPase) (297); 58 �Mc (bovine heart MF1-ATPase) (297)

a I50.
b Ki.
c Kd.
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FIG. 9. Structures of purine nucleotides and nucleotide analogs. (A) Nucleotides and nucleotide analogs. (B) Azidonucleotides.

616 HONG AND PEDERSEN MICROBIOL. MOL. BIOL. REV.



FIG. 9—Continued.
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thesis and exhibit a much stronger inhibition of ATP synthesis
than of ATP hydrolysis (356, 397). F-ADP binds to three sites
in bovine heart MF1 with Kd values of 50 nM for all sites,
whereas the N-ADP binds to two sites with Kd values of 20 to
50 nM (397). F-ADP binds approximately 10 times more
strongly than F-ATP (3	-O-[1-(5-dimethylamino)-naphthoy-
l]ATP), whereas F-AMP (3	-O-[1-(5-dimethylamino)-naph-
thoyl]AMP) is not inhibitory (356). ANA-ADP (3	-O-[5-azi-
donaphthoyl]-ADP) is a photoreactive analog of N-ADP (Fig.
9B and Table 18). It binds to the same site as N-ADP but with
a lower affinity, i.e., about 2.5 times lower than the Ki of

N-ADP for bovine heart MF1. Upon illumination, ANA-ADP
rapidly photoinactivates F1 (240).

3	-O-(4-Benzoyl)benzoyladenosine 5	-triphosphate (BzATP)
and BzADP are ribose-modified photoactivatable analogs of
ATP and ADP in which a photoreactive (4-benzoyl)benzoyl
group is attached to the 3	 hydroxyls of ribose (Fig. 9A)
(435). BzATP binds to the ATP synthase � subunits both
isolated and complexed but binds only to isolated � subunits
(33). BzATP and BzADP bind to the catalytic site as com-
petitive and reversible inhibitors in the absence of illumina-
tion. However, under actinic illumination, BzATP and

FIG. 9—Continued.
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BzADP inactivate F1 irreversibly by covalently modifying
the catalytic site (3, 8, 435).

Other 3	-O-substituted adenine nucleotides include 3	-O-
phenylacetyl-ADP, 3	-O-phenylbutyryl-ADP, 3	-O-benzoyl-

ADP, 3	-O-[N-(2-nitrophenyl)-�-aminobutyryl]-ADP, 3	-O-[N-
(4-nitrophenyl)-�-aminobutyryl]-ADP, 3	-O-naphthoyl-(1)-ADP,
3	-O-naphthoyl-(1)-ATP, 3	-O-naphthoyl-(2)-ADP, 3	-O-
naphthyl-(1)-acetyl-ADP, 3	-O-naphthyl-(2)-acetyl-ADP, 3	-

TABLE 18. Azidonucleotides

Name Molecular formula Other names Inhibitory potency (reference)

8-Azido-ATP C10H15N8O13P3 8-Azidoadenosine 5	-triphosphate 1 mMb (bovine heart SMP, phosphorylation) (371);
1 mMb (bovine heart SMP-ATPase) (371); 88%
inhibition at 1.7 mM (bovine heart MF1-
ATPase) (419); complete inhibition at 2 inhibitor
bound mol/mol F1 (bovine heart MF1-ATPase)
(110, 420)

8-Azido-ADP C10H14N8O10P2 8-Azidoadenosine 5	-diphosphate 86% inhibition at 1.7 mM (bovine heart MF1-
ATPase) (419); full inhibition at 1.9–2 mol
bound inhibitor/mol F1 (134, 419)

2-Azido-ATP C10H15N8O13P3 2-Azidoadenosine 5	-triphosphate 52% inhibition at 1.8 (0.8 covalent) inhibitor mol/
mol F1 (EF1-ATPase) (425); complete inhibition
at 0.92 inhibitor bound mol/mol F1 (bovine heart
MF1-ATPase) (408)

2-Azido-ADP C10H14N8O10P2 2-Azidoadenosine 5	-diphosphate;
1-azidoadenosine-3	,5	-
bisphosphate

5 �Mc in the dark (bovine heart MF1-ATPase)
(45); full inhibition at 1.9–2 mol bound inhibitor/
mol F1 (45, 134)

2-Azido-TNP-ATP C17H20N11O18P3 2-N3-TNP-ATP
ANA-ADP C21H17N8O11P2 3	-O-�5-Azidonaphthoyl-ADP 11 �Mb in the dark (bovine heart MF1-ATPase)

(240); total inactivation at 2 mol/mol F1 (bovine
heart MF1-ATPase) (240)

8-Azido-FSBA C17H15FN8O7S 5	-p	-Fluorosulfonylbenzoyl-8-
azidoadenosine; 8-N3-FSBA

0.47 mMc in the dark (bovine heart MF1-ATPase)
(453)

2-Azido-AMP-PNP C10H15N9O12P3 2-Azidoadenyl-5	-yl
imidodiphosphate

4 �Mb (bovine heart MF1-ATPase) (109)

8-Azido-AMP-PNP C10H15N9O12P3 8-Azidoadenyl-5	-yl
imidodiphosphate

460 �Mb (bovine heart MF1-ATPase) (109)

NAP4-ADP C20H24N10O13P2 N-4-Azido-2-nitrophenyl-
��aminobutyryl-ADP

2.0 �Ma (bovine heart SMP-oxidative
phosphorylation) (355); 0.6 mMb in the dark
(bovine heart MF1-ATPase) (244); 0.5 �Mb

(bovine heart SMP-oxidative phosphorylation)
(355)

NAP4-AMP-PNP C20H23N11O15P3 Nap4-PPNHP;
NAP4-AdoPP�NHP; N-4-azido-
2-nitrophenyl ��aminobutyryl-5-
adenylyl imidodiphosphate; N-4-
Azido-2-nitrophenyl-�-
aminobutyryl-AdoPP�NHP

3 �Mc in the dark (bovine heart MF1-ATPase)
(247)

NAP3-ATP C19H23N10O16P3 3	-O-{3-�N-(4-Azido-2-nitrophenyl)
aminopropionyl}adenosine 5	-
triphosphate; arylazido
aminopropionyl ATP

43% maximum inhibition at 36 �M with 15 min
photoreaction (bovine heart MF1-ATPase) (341)

NAP3-ADP C19H22N10O13P2 3	-O-�3-�N-(Azido-2-nitrophenyl)
aminopropionyladenosine 5	-
diphosphate; arylazido-�-alanyl-
ADP; arylazido aminopropionyl
ADP

80% inhibition at 50 �M in the dark (pig heart
MF1-ATPase) (117)

NAB-ATP C17H18N9O16P3 3	(2	)-O-(2-Nitro-4-
azidobenzoyl)adenosine 5	-
triphosphate

Km of 0.85 mM, maximal 40–45% modification
(bovine heart MF1-ATPase) (216)

NAB-GTP C17H18N9O17P3 3	(2	)-O-(2-Nitro-4-
azidobenzoyl)guanosine 5	-
triphosphate

Maximal 40–45% modification (bovine heart MF1-
ATPase) (216)

ANP-ADP C19H27N9O13P2 3	-O-�3-(4-Azido-2-
nitrophenyl)propionyl-ADP

1.3 �Ma (bovine heart SMP-oxidative
phosphorylation) (355); 50 �Mb (bovine heart
MF1-ATPase) (426); 0.2 �Mb (bovine heart
SMP-oxidative phosphorylation) (355, 426); full
inhibition at 3 mol/mol F1 (bovine heart MF1-
ATPase) (426)

a I50.
b Ki.
c Kd.
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O-5-dimethylaminonaphthoyl-(1)-ADP, 3	-O-5-dimethylamino-
naphthoyl-(1)-ATP, 3	-O-anthranoyl-(1)-ADP, and 3	-O-
anthranoyl-(9)-ADP (356). These inhibitors inhibit oxidative
phosphorylation in bovine heart SMP with Ki values in the
range of 0.3 to 5.9 �M (Table 17).

The fluorosulfonylbenzoyl nucleotides 5	-p-fluorosulfonylben-
zoylinosine (FSBI), 5	-p-fluorosulfonylbenzoyladenosine (FSBA),
and 5	-p-fluorosulfonylbenzoylethenoadenosine (FSBεA) bind to
F1 and inactivate the enzyme by modifying amino acid side
chains of � and/or � subunits. FSBI binds to the � subunit
reversibly and reacts covalently with a Tyr residue. The inac-
tivation follows pseudo-first-order kinetics, and the residues
modified are �Tyr345 in bovine heart MF1 (49, 57) and
�Tyr364 in F1 from thermophilic bacterium PS3 (50). The
modification of a Tyr residue in a single � subunit is sufficient
to inactivate F1 completely (49).

FSBA binds reversibly to a single binding site on the �
subunit of MF1 (101). This inactivates F1 irreversibly by form-
ing a covalent bond via a process that follows pseudo-first-
order kinetics (51, 101). The modified residues are �Tyr244,
�Tyr300, and either �Tyr368 or �His427 (51, 56, 114, 407).
The complete inactivation of F1-ATPase by FSBA requires the
modification of all three copies of the � subunits, in contrast to
that by FSBI (49). 8-azido-FSBA (5	-p-fluorosulfonylbenzoyl-
8-azidoadenosine) binds to MF1 in the absence of light and
inhibits ATPase activity. Upon illumination of the dark-inac-
tivated F1, 8-azido-FSBA induces in high yield cross-linking
between �His427 and �Tyr345 within the same � subunit
(453).

FSBεA binds to �Tyr244 of MF1, inactivating ATPase ac-
tivity with pseudo-first-order kinetics (152, 414). Maximal in-
activation is achieved when FSBεA modifies �Tyr244 in one or
two copies of the subunit. Inactivation of F1 by both FSBA and
FSBεA is stimulated by high concentrations of phosphate,
whereas inactivation by FSBI is not greatly affected. Prior
modification of F1 with FSBA completely prevents modifica-
tion of �Tyr244 by FSBεA, while prior inactivation with FSBI
allows considerable modification.

Adenosine oligophospho-pyridoxal compounds (APxPL)
contain a chain of phosphoryl groups linking adenosine and
pyridoxal moieties. Adenosine triphospho-pyridoxal (AP3-PL)
binds to the catalytic sites of EF1 and inhibits hydrolytic activity
by modifying � and � subunits. The stoichiometric ratio of
binding of AP3-PL for complete inactivation of F1 is about 1
mol of AP3-PL per 1 mol F1 (288). Addition of Mg2� increases
the inhibitory potencies of AP3-PL and also causes a change in
the ratio of modification of � and � subunits by AP3-PL from
4:1 in the absence of Mg2� to 1:3 in its presence (184). The
residues modified by AP3-PL are �Lys201, �Lys155, and
�Lys201 (184, 281, 390). Adenosine tetraphospho-pyridoxal
(AP4-PL) binds to EF1 with the same concentration for half-
maximal inactivation as AP3-PL and shows essentially the same
absorption spectrum and binding kinetics (288). Adenosine
diphospho-pyridoxal (AP2-PL or PLP-AMP) is a weak inhibi-
tor compared to AP3-PL (288). It binds to �Lys201 in the
isolated � subunit from E. coli with a maximal stoichiometry of
approximately 1 mol/mol (Kd of �150 �M). It also impairs the
reconstitution of � subunits with � and � subunits.

The 2	,3	-dialdehydes of ATP, ADP, and AMP (oATP,
oADP, and oAMP) are periodate-oxidized derivatives of ATP,

ADP, and AMP in which the ribose ring is opened (Fig. 9A).
In the presence of Mg2�, oATP is a substrate and acts as a
competitive inhibitor of ATP hydrolysis. Prolonged incubation
of the enzyme with oATP inactivates F1-ATPase activity irre-
versibly with pseudo-first-order kinetics by modifying both �
and � subunits (95, 219, 239). Similar inactivation kinetics are
also observed with oADP, but the kinetics of inactivation are
the same whether Mg2� is present or absent (95). The type of
subunits and stoichiometry for the binding of oADP to F1 are
somewhat controversial; the binding of oADP to both � and �
subunits with a stoichiometry of 2 to 3 mol oADP/mol F1 (95,
239) and the binding of oADP only to � subunits with a stoi-
chiometry of 0.9 to 1 mol oADP/mol F1 (217) both have been
proposed. oAMP also inactivates F1, while AMP is not a sub-
strate for F1. Finally, both oADP and oAMP inactivate F1

more efficiently than does oATP (Table 17).
Cibacron blue and 4-benzoyl(benzoyl)-1-amidofluorescein

(BzAF) are structural analogs of purine nucleotides. They bind
to MF1 and inhibit ATPase activity (28, 297). BzAF contains a
benzophenone moiety on one side of the molecule that is
excitable by irradiation at �340 to 366 nm, and the irradiation
of BzaF leads to the covalent insertion of BzAF into F1. BzAF
also contains a fluorescein moiety on the other side of the
molecule that fluoresces at �515 nm upon excitation at �460
to 490 nm. BzAF inhibits mitochondrial ATP synthase as a
catalytic site-specific covalent modifying agent (297). Like
BzATP, BzAF binds to F1 competitively with respect to ATP in
the absence of illumination and forms a covalent bond with F1

upon actinic irradiation. The photoinactivation of F1 by BzAF
follows pseudo-first-order kinetics.

8-Azido-ATP and 8-azido-ADP are adenine-modified an-
alogs of ATP and ADP in which an azido group is attached
to the carbon 8 of adenine (Fig. 9B). 8-Azido-ATP is a
substrate of F1 and is hydrolyzed slowly by F1 in the dark
(420). The Km for 8-azido-ATP is similar to that for ATP,
but the Vmax of hydrolysis with 8-azido-ATP is only 6% of
that observed with ATP (bovine heart MF1) (371). On irra-
diation at 350 to 360 nm, the 8-azido-ATP inactivates F1-
ATPase by binding covalently to F1, where both � and �
subunits are modified. About 2.5 to 3 times more 8-azido-
ATP is bound to � than to � subunits in MF1 (175, 371),
whereas almost equal amounts are bound at these two sub-
units in CF1 (421). The modified residues in the � subunit of
bovine heart F1 are Lys301, Ile304, and Tyr311 (175). F1-
ATPase activity is completely inhibited when 2 mol 8-azido-
ATP binds per mol F1. Moreover, Mg2� is not required for
the binding (420). Interestingly, 8-azido-ADP is phosphory-
lated by ATP synthase in SMP at a very low rate in the dark.
The Ki for 8-azido-ADP is about 1 mM for mitochondrial
F0F1 from bovine heart, whereas the Ki for ADP is �20 nM
for MF1 from the same source (371). Photolysis at 350 nm
leads to the inactivation of ATP synthase, as the 8-azido-
ADP preferentially binds to � subunits (133, 371). The
ATPase activity of F1 is completely inhibited at 2 mol of
8-azido-ADP bound per 1 mol F1 (419). In the presence of
fluoroaluminate, 8-azido-ADP modifies �Tyr-345 (133).

2-Azido-ATP and -ADP are also adenine-modified ana-
logs of ATP and ADP in which an azido group is attached to
carbon 2 of adenine. 2-Azido-ADP photolabels � subunits
exclusively upon photoirradiation, in contrast to 8-azido-
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ADP or -ATP, which modify both � and � subunits (86, 89,
419, 421). 2-Azido-ADP binds to F1 with an affinity similar
to the affinity of ADP (45), and upon irradiation it modifies
�Leu342, �Ile344, �Tyr345, �Pro346, or �Tyr368 (bovine
heart MF1) (111, 132).

2- and 8-Azidoadenyl-5	-imidodiphosphate (2-azido-AMP-
PNP and 8-azido-AMP-PNP) are derivatives of AMP-PNP.
They bind to F1 at what appear to be both catalytic and non-
catalytic sites (109). Under nonphotolytic conditions, 2-azido-
AMP-PNP has a much higher inhibitory potency (Ki � 4 �M)
than 8-azido-AMP-PNP (Ki � 460 �M).

3	-Arylazido butyryl ADP (NAP4-ADP) is a photoreactive
derivative of ADP in which a photosensitive N-4-azido-2-nitro-
phenylaminobutyryl group is attached to the adenine ring of
ADP (244). NAP4-ADP is a competitive inhibitor with respect
to ATP, with a Ki value of 0.6 mM (bovine heart MF1). NAP4-
ADP is a moderate inhibitor in the dark. However, upon pho-
toirradiation with visible light, it inactivates F1 by binding
covalently to both � and � subunits. NAP4-AMP-PNP (or
NAP4-AdoPP[NH]P) is an analog of NAP4-ATP containing an
NH group that replaces oxygen at the position of the terminal
bridge oxygen of the triphosphate chain. NAP4-AMP-PNP
binds to F1 with high affinity, and upon illumination, it inacti-
vates F1 by covalently modifying � and � subunits (247). NAP4-
AMP-PNP preferentially modifies the � subunit(s) at low con-
centrations, whereas it modifies � and � subunits equally at
high concentrations.

3	-O-[3-[N-(Azido-2-nitrophenyl)amino]propionyl]ATP (NAP3-
ATP) and NAP3-ADP are analogs of ATP and ADP in
which a photoreactive N-4-azido-2-nitrophenylaminopro-
pionyl group is attached to the adenine ring. NAP3-ATP acts
as a substrate in the dark and shows photodependent inhi-
bition associated with covalent modification of F1 upon il-
lumination (117, 341). In contrast, NAP3-ADP, just like
ADP, induces hysteretic inhibition of soluble F1 and mem-
brane-bound F1, with the latter being more sensitive (117).
The kinetics of inhibition is biphasic. Preincubation of MF1

from pig heart with NAP3-ADP in the dark inhibits ATPase
activity about 80%, a value that is increased to 87% upon
photoirradiation (117).

3	(2	)-O-(2-Nitro-4-azidobenzoyl)ATP (NAB-ATP) and NAB-
GTP are 3	(2	)-O-(2-nitro-4-azidobenzoyl)-derivatives of ATP
and GTP in which a 2-nitro-4-azidobenzoyl group is attached
to the 2	 hydroxyls of ribose. NAB-ATP binds to the catalytic
site of F1 and is hydrolyzed to NAB-ADP and inorganic
phosphate (216). After hydrolysis, NAB-ADP remains
bound to F1, whereas phosphate is dissociated. The
F1 � NAD-ADP complex is inactive, but in the presence of
ATP, the bound NAB-ADP is released, resulting in the
reactivation of ATPase activity. Illumination (300 to 380
nm) of F1 inhibited with NAB-ADP leads to its covalent
binding to the enzyme. NAB-GTP has an inhibitory activity
similar to that of NAB-ATP.

3	-O-[3-(4-Azido-2-nitrophenyl)propionyl]-ADP (ANP-
ADP) is a photoreactive analog of ADP in which a 4-azido-2-
nitrophenyl propionyl group is attached to the 3	 hydroxyls
of ribose (Fig. 9B). ANP-ADP binds to nucleotide binding
sites on F1, inhibiting both ATP hydrolysis and ATP synthe-
sis (355, 426). Inhibition of F1 by ANP-ADP is competitive
with ADP in the dark, but upon illumination, ANP-ADP

inactivates F1 by covalently modifying � and � subunits. The
stoichiometry for complete photoinactivation of F1 is 3 mol
of ANP-ADP/mol of F1. The inhibition of F1 by the photo-
labeling is reversed by mild alkaline treatment due to the
hydrolysis of the 3	-ester bond and release of the ADP
moiety of the inhibitor (426).

AMINO ACID MODIFIERS

Amino Group Modifiers

Phenylglyoxal and butanedione are dicarbonylic Arg residue
modifiers. They inactivate both membrane-bound and isolated
F1 (Fig. 10A and Table 19) (43, 128, 129, 162, 248, 375, 381,
385). Inactivation by these agents follows pseudo-first-order
kinetics (67, 128, 129, 248). Although the rate of inactivation is
decreased in the presence of ADP and ATP (67, 128, 398), it
is not significantly influenced by the presence of phosphate
(398). Phenylglyoxal and butanedione also inhibit ATP7 Pi

exchange activity (43, 128, 162, 248, 385). Only one molecule of
reagent per F1 active site is required for inactivation, with the
binding site(s) believed to be located at or near this active site
(128, 248).

1-Fluoro-2,4-dinitrobenzene is a Lys residue modifier that
inhibits the hydrolytic activity of MF1 (11, 194, 250, 399). It
modifies Lys162 (bovine sequence) in the P loop, the same
residue to which the nitrobenzene (NBD) group migrates at
pH 9 (194). Inhibition of ATPase activity follows first-order
kinetics (399), with about four 2,4-dinitrophenyl labels re-
quired for 96% inhibition (194). Inhibition is reversed nearly
50% by dithiothreitol (11) and is protected effectively by ATP
or Pi and slightly by ADP (399).

Dansyl chloride is an acyl chloride of 5-dimethylamino-1-
naphthalenesulfonic acid. It modifies reactive amino groups of
proteins. Dansyl chloride binds to MF1 and inhibits both ATP
synthesis and membrane-bound ATPase activity to approxi-
mately the same extent (250).

Carboxyl Group Modifiers

Carbodiimides are compounds containing a N�C�C func-
tional group. Some inhibit ATP synthase by modifying carboxyl
residues residing within F1, F0, or both (Fig. 10B). DCCD and
N-(2,2,6,6-tetramethylpeperidyl-1-oxyl)-N-(cyclohexyl)carbo-
diimide (NCCD) are lipid-soluble carbodiimides. DCCD binds
to both F1 and F0 of ATP synthases from mitochondria and
some bacteria (137, 204, 400, 441) (Table 20). F1 from some
bacteria, such as Helicobacter pylori, are insensitive to DCCD
(36). DCCD reacts covalently with DCCD-sensitive F1 via a
Glu residue in the � subunit. In F1 from E. coli, �Glu192 binds
DCCD, while in bovine MF1, �Glu199, corresponding to E.
coli �Glu192, is modified. In F1 from thermophilic Bacillus,
�Glu181 (E. coli sequence) rather than �Glu192 is modified
(137, 400, 441). Incorporation of 1 mol of DCCD into 1 mol of
F1 results in 95% inhibition of the ATPase activity of EF1, and
2 mol of DCCD/mol F1 leads to complete inhibition (400). In
the crystal structure of the F1-DCCD complex from bovine
heart mitochondria, one molecule of DCCD is bound per F1

(137). In this structure, the �Glu199 of �DP located at the
interface between �DP and �DP is modified. The covalently
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modified DCCD (dicyclohexyl-N-acylurea) is bound in a hy-
drophobic cleft with one face exposed to the solvent. Residues
�Val164, �Met167, �Val420 and �Phe424 contribute to the
binding of DCCD, and the steric hindrance involved is believed
to inhibit F1 by blocking a conformational change from �DP

to �E.
DCCD, by binding F0 (35), also inhibits F0-mediated proton

translocation and the ATPase activity of the coupled F0F1

complex. Here, DCCD is bound covalently to an essential
carboxyl residue of subunit c at position 61 (E. coli sequence)

(68, 122, 364). The stoichiometries for the maximal inhibition
of function are 1 mol of DCCD/mol of F0, i.e., modification of
1 subunit c/F0 for inhibiting ATPase activity of ATP synthase
and 2 mol of DCCD/mol F0 for inhibiting proton translocation
(140, 171, 213).

NCCD is a lipid-soluble spin-labeled inhibitor of ATP syn-
thase that targets the F0 of ATP synthase (23, 24). The binding
site for NCCD is believed to be the same as that for DCCD,
i.e., Asp61 of subunit c, as NCCD’s binding to the ATP syn-
thase is prevented by DCCD (24). Moreover, the mutant of

FIG. 10. Structures of amino acid residue modifiers. (A) Amino group modifiers. FDNB, 1-fluoro-2,4-dinitrobenzene. (B) Carboxyl group
modifiers. CMCD, 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate. (C) Cys/Tyr residue modifiers. DTNB, 5,5	-dithio-
bis(2-nitrobenzoic acid). (D) His residue modifiers.

622 HONG AND PEDERSEN MICROBIOL. MOL. BIOL. REV.



Ala25 in subunit c, which is near Asp61, shows a greatly re-
duced inhibitory activity with NCCD (138).

1-Cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-
toluenesulfonate and ethyldimethylaminopropyl carbodiimide
(EDC) are water-soluble carbodiimides that modify a carboxyl
group(s) in F1. 1-Cyclohexyl-3-(2-morpholinoethyl)carbodiim-
ide metho-p-toluenesulfonate binds to F1 reversibly and likely
modifies carboxyl groups near the catalytic sites (186). EDC
inhibits F1 after modifying several carboxyl groups in � sub-
units. The inhibition by EDC is greatly reduced by Mg2� (236).
Incorporation of about 13 mol of EDC/mol F1 (E. coli) leads to
95% inhibition of ATPase activity. Here, two-thirds of the
bound EDC is bound to � subunits, where it modifies multiple
sites in a short segment (residues 162 to 194) (E. coli sequence)
(236). EDC also promotes formation of intersubunit cross-
links between subunits � and ε. The residues involved are
�Glu381 and likely εSer108 (90).

N-Ethoxycarboxyl-2-ethoxy-1,2-dihydroquinoline (EEDQ)
inhibits both MF1 and BF1 (Fig. 10B and Table 20) (204, 222,
250, 320, 322, 399). The inactivation by EEDQ is both pH and
temperature dependent and also time and concentration de-
pendent (204, 322). One mole of EEDQ binds to one mole of
F1. The inactivation follows pseudo-first-order kinetics until 90
to 95% inactivation occurs (322). Inhibitions by EEDQ and
DCCD are additive, suggesting that the binding sites of EEDQ
and DCCD are either the same (204, 222) or located close to
each other (320).

Woodward’s reagent K inhibits both F1 and F0 (204, 381).
The chemical modification of the � subunit of F1 from Rho-
dospirillum rubrum with this reagent results in loss of both
phosphate and ATP binding capacities (203). However, ADP
binding sites remain active. Chemical modification of F0 from
E. coli by Woodward’s reagent K inhibits both proton translo-
cation and total ATPase activity (381).

Cys and Tyr Residue Modifiers

4-Chloro-7-nitrobenzofurazan (NBD-Cl) is a fluorescent ad-
enine analog that labels Tyr or Cys residues (Fig. 10C and

Table 21). It inhibits both the synthetic and hydrolytic activities
of ATP synthases from bacteria, chloroplasts, and mitochon-
dria by modifying an essential residue (�Tyr311, bovine se-
quence) at the catalytic site(s) of F1 (12, 70, 119, 120, 245, 388,
415). Depending on the experimental conditions, other sub-
units, particularly the � subunit, are also modified by NBD-Cl
(96, 121, 146, 283). In F1 modified by NBD-Cl, the Tyr-O-NBD
linkage is unstable at alkaline pH. The NBD group from
�Tyr311 migrates to �Lys162 in the P-loop at pH 9 as a con-
sequence of O-to-N migration (13, 14, 121). The resulting
NBD-N-Lys derivative of F1 is also catalytically inactive (14,
121). In a crystal structure of bovine MF1 covalently modified
by NBD-Cl, the NBD-Cl is found in only one of three �
subunits, �E (292). The �Tyr311 residues in the �TP and �DP

subunits are buried at the �-� subunit interfaces and are inac-
cessible to NBD-Cl. The NBD binding pocket is positioned in
the central nucleotide binding domain with no hydrogen bonds
between the NBD ring and the protein. NBD-Cl appears to
inhibit F1 by preventing �E from undergoing a conformational
change (292).

Tetranitromethane and 1,5-difluoro-2,4-dinitrobenzene
(DFDNB) modify Tyr residues. Tetranitromethane nitrates
the Tyr residue of ATP synthase subunit c of the thermophilic
bacterium PS3 and inhibits the proton conduction of TF0

(375). In contrast, tetranitromethane inhibits neither proton
translocation nor ATPase activity of E. coli ATP synthase
(381). However, DFDNB does inhibit the ATPase activity of
MF1 (7, 55), with a molar ratio of 3 for complete inhibition.
Here, inhibition is reversed by dithiothreitol. (7). Inactivation
of F1 by DFDNB is believed to be due to modification of either
�Tyr311 (55) or another Tyr residue (7).

Thiol group reagents, N-ethylmaleimide (NEM), bismuth
subcitrate, omeprazole, 5,5	-dithiobis(2-nitrobenzoic acid),
p-chloromercuribenzoate (PCMB), p-chloromercuribenzene
sulfonate (PCMS), mersalyl, 2,2	-dithiobispyridine, and
N-(7-dimethylamino-4-methyl-coumarinyl)-maleimide in-
hibit ATP synthase by modifying Cys residues. Specifically,
NEM inhibits the ATPase activity of F1s from fungi, some
bacteria such as Vibrio parahaemolyticus, and some mito-

TABLE 19. Amino group modifiers

Name or
abbreviation

Molecular
formula Other names Inhibitory potency, I50 (reference)

Phenylglyoxal C8H6O2 Benzoylcarboxaldehyde; phenylglyoxal;
benzoylformaldehyde; phenylethanedione; �-
oxobenzeneacetaldehyde

25% inhibition at 2.7 �mol/mg protein
(bovine heart SMP-ATPase) (162);
47.5% inhibition at 3 mM (E. coli
F0F1-ATPase after F0 modification)
(381); 33.5% inhibition at 20 mM
(E. coli F0-liposome proton uptake)
(381)

Butanedione C4H6O2 Diacetyl; dimethyl glyoxal; 2,3-butanedione;
dimethyl diketone; butadione

0.63 �mol/mg protein and �100%
inhibition at 1.7 �mol/mg protein
(bovine heart SMP-ATPase) (162)

FDNB C6H3FN2O4 1-Fluoro-2,4-dinitrobenzene; dinitrofluorobenzene;
2,4-DNFB; 2,4-dinitro-1-fluorobenzene;
2,4-dinitrofluorobenzene;
fluoro-1,3-dinitrobenzene; Sanger’s reagent

96% inhibition at about four 2,4-
dinitrophenyl labels (bovine heart
MF1-ATPase) (194)

Dansyl chloride C12H12ClNO2S 5-(Dimethylamino)-naphthalene-1-sulfonyl chloride;
1-chlorosulfonyl-5-dimethylaminonaphthalene;
1-dimethylaminonaphthalene-5-sulfonyl chloride;
dansyl; DNS chloride
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chondria, i.e., those from S. cerevisiae and Schizosaccharo-
myces pombe (115, 145, 344). The inactivation of F1 by NEM
in sensitive cases is irreversible and protected by nucleotides
(115). In contrast, the F1s from E. coli and bovine heart
mitochondria are resistant to NEM (344, 366). NEM also
binds various F0 polypeptides, inhibiting proton conduction
(445). For example, NEM inhibits mitochondrial F0 from
bovine heart while labeling 25-, 11-, and 9-kDa polypeptides
(445).

Bismuth subcitrate and omeprazole are antiulcer drugs.
They bind to sulfhydryl groups of F1 and form stable complexes
(36). They inhibit the ATPase activity of F1 from Helicobacter
pylori via a reaction that can be prevented and also reversed by
mercaptan glutathione. At low pH, omeprazole is converted
into a cyclic sulfonamide, and this form inhibits the ATPase
activity of H. pylori F1 more potently than the form without
acid activation (I50 � 43 �M when acid activated, compared to
90 �M without acid activation).

Regarding other sulfhydryl reactive agents, 5,5	-dithiobis(2-
nitrobenzoic acid) inhibits the ATPase activity of nucleotide-
depleted F1 (392). In contrast, it is inhibitory neither to native
F1 nor to nucleotide-depleted F1 in the presence of either ADP
or ATP.

PCMB, PCMS, and mersalyl are polar organic mercurials that
target F0 of mitochondrial ATP synthase. Both PCMB and PCMS
inhibit the ATP synthesis and ATPase activities of bovine heart
ATP synthase. Thiols modified by the mercurials are different
from those modified by NEM (438). In contrast to the case for
NEM, inhibition by mercurials is reversed almost completely
(PCMB) or partially (PCMS) by addition of dithiothreitol. More-
over, the binding of mercurials protects the ATP synthase from
irreversible inhibition by DCCD. Mersalyl also inhibits proton
conductivity by F0 from bovine heart mitochondria. Here, the
inhibition is much more potent than that observed with PCMB
and PCMS (445). Although mersalyl has no inhibitory effect at
concentration of up to �50 �M, it inhibits proton conduction at
higher concentrations (�70% inhibition at 130 �M).

The sulfhydryl-reactive agents 2,2	-dithiobispyridine and
N-(7-dimethylamino-4-methyl-coumarinyl)-maleimide also
inhibit proton conductivity by F0 from bovine heart
mitochondria (445). N-(7-Dimethylamino-4-methyl-cou-
marinyl)-maleimide has stronger inhibitory potencies than
2,2	-dithiobispyridine and NEM. N-(7-dimethylamino-4-
methyl-coumarinyl)-maleimide shows no inhibition up to a
concentration of 200 �M and inhibits proton conduction by
60% at 400 �M.

TABLE 20. Carboxyl group modifiers

Name or
abbreviaion Molecular formula Other names Inhibitory potency (reference)

DCCD C13H22N2 1,3-Dicyclohexylcarbodiimide;
N,N	-dicyclohexylcarbodiimide;
bis(cyclohexyl)carbodiimide;
carbodicyclohexylimide; N,N	-
methanetetraylbiscyclo-hexaamine

1.2 �g of inhibitor/mg proteina (S. cerevisiae SMP-
ATPase) (150); 1–5 �g of inhibitor/mg proteina (T.
pyriformis SMP-ATPase) (404); 200 �Ma in less than
5 min and at �40 �Ma in 30 min (R. rubrum F1-
ATPase) (204); 1.9 �g/mg proteina (C. fasciculata
SMP-ATPase) (439); 95% inhibition with 1 mol
DCCD/mol F1 (EF1-ATPase) (400); maximal 70–80%
inhibition at 30 �M (membrane-bound EF0F1-
ATPase) (171); 47% inhibition at 5 �M (C.
thermoaceticum membrane-bound F0F1-ATPase)
(190); 97% inhibition with 2 mol inhibitor bound/mol
F1 (bovine heart MF1-ATPase) (250); maximal
inhibition at 1 mol inhibitor/mol F0 (bovine heart
SMP-ATPase) (140); maximal inhibition at 2 mol
inhibitor/mol F0 (bovine heart H�-translocation)
(140); maximal inhibition at 1 mol inhibitor/mol F0
(E. coli membrane H�-translocation) (171)

NCCD C16H28N3O N-(2,2,6,6-Tetramethylpeperidyl-1-oxyl)-
N(cyclohexyl)carbodiimide; N-(2,2,6,6-
tetramethyl-1-oxypiperid-4-yl)-N	-
cyclohexylcarbodiimide

0.65 nmol/mg proteina (bovine heart SMP-ATPase)
(24); 85% inhibition at 1 nmol NCCD/mg protein
(bovine heart SMP-ATPase) (23)

CMCD C14H28N3O � C7H8O3S 1-Cyclohexyl-3-(2-morpholinoethyl)
carbodiimidemetho-p-toluenesulfonate;
N-cyclohexyl-N	-2-morpholinoethyl-
carbodiimide-methyl-4-toluolsulfonate

200 �Mb (bovine heart MF1-ATPase) (186)

EDC C8H17N3 Ethyldimethylaminopropyl carbodiimide;
1-ethyl-3-�3-(dimethylamino)propyl
carbodiimide; (3-(dimethylamino)
propyl)ethylcarbodiimide

95% inhibition at 13 mol of EDC/mol F1 (EF1-ATPase)
(236)

EEDQ C14H17NO3 N-Ethoxycarboxyl-2-ethoxy-1,2-
dihydroquinoline

200 �Ma in less than 5 min and at �40 �Ma in 30 min
(R. rubrum F1-ATPase) (204); 70% inhibition at 400–
600 �M (bovine heart MF1-ATPase) (250, 320); 75%
inhibition at 400 �M (E. coli F1-ATPase) (320)

Woodward’s
reagent K

C11H11NO4S 2-Ethyl-5-phenylisoxazolium-3	-sulfonate;
N-ethyl-5-phenylisoxazolium-3	-
sulfonate

88% inhibition at 15 mM (E. coli F0-liposome proton
uptake) (162)

a I50.
b Kd.
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His Residue Modifiers

Diethyl pyrocarbonate and Rose bengal are His residue-
modifying reagents (Fig. 10D and Table 22). Diethyl pyrocar-

bonate modifies the ATP synthase � subunit, completely pre-
venting the binding of phosphate. It also blocks the binding of
ATP to a Mg2�-dependent low-affinity site (203, 381, 445). In
contrast, the ADP binding capacity of the � subunit is not

TABLE 21. Cys/Tyr residue modifiers

Name or abbreviation Molecular formula Other names Inhibitory potency, I50 (reference)

NBD-Cl C6H2ClN3O3 NBF-Cl; 7-chloro-4-nitrobenzofurazan; 4-
chloro-7-nitrobenzofurazan; 7-chloro-4-
nitrobenzofurazan; 4-chloro-7-nitro-2,1,3-
benzoxadiazole; 7-chloro-4-nitrobenzo-2-
oxa-1,3-diazole; 4-chloro-7-nitrobenzo-2-
oxa-1,3-diazole

4.5 �g of inhibitor/mg protein (T. pyriformis
SMP-ATPase) (404); 68% inhibition at 50
�M (C. thermoaceticum F1-ATPase) (190);
complete inhibition at 1 mol inhibitor
bound/mol F1 (bovine heart F1-ATPase)
(246); �90% inhibition at 1.4 mol inhibitor
bound/mol F1 (TF1-ATPase) (415)

Tetranitromethane CN4O8 Tetan 130 nmol/mg protein and �100% inhibition at
210 nmol/mg protein (bovine heart SMP-
ATPase) (162); 2.5 mM (TF0 vesicle, proton
conduction) (375); almost complete
inhibition at 8 mM (TF0 vesicle, proton
conduction) (375)

DFDNB C6H2F2N2O4 1,5-Difluoro-2,4-dinitrobenzene; 4,6-
difluoro-1,3-dinitrobenzene

Complete inhibition at 3 mol inhibitor/mol F1
(bovine heart MF1-ATPase) (7)

NEM C6H7N1O2 N-Ethylmaleimide; maleic acid N-ethylimide �0.6 mM (S. pombe MF1-ATPase) (115);
74% inhibition at 1 mM (V.
parahaemolyticus F1-ATPase) (344)

Bismuth subcitrate C6H8O7Bi CBS; colloidal bismuth subcitrate;
tripotassium dicitratobismuthate

73 �M (H. pylori F1-ATPase) (36)

Omeprazolea C17H19N3O3S 5-Methoxy-2-(((4-methoxy-3,5-dimethyl-2-
pyridyl)methyl)sulfinyl)benzimidazole;
Audazol; Omepral

90 �M (without acid activation) and 43 �M
(with acid activation) (H. pylori F1-ATPase)
(36)

DTNB C14H8N2O8S2 5,5	-Dithiobis(2-nitrobenzoic acid);
dithionitrobenzoic acid; 2,2	-dinitro-5,5	-
dithiodibenzoic acid; 3,3	-dithiobis(6-
nitrobenzoic acid); dithiobisnitrobenzoic
acid; Ellman’s Reagent

39% inhibition at 0.4 mM and 46% inhibition
at 1.3 mM (bovine heart MF1-ATPase)
(392)

PCMB C7H5ClHgO2 p-Chloromercuribenzoic acid; 4-
carboxyphenylmercuric chloride; 4-
chloromercuribenzoic acid

�90% inhibition at 4.5 mM (bovine heart
SMP-ATPase) (438)

PCMS C6H5ClHgO3S p-Chloromercuribenzene sulfonate;
4-chloromercuribenzenesulfonate;
PCMBS

6 mM (bovine heart SMP-ATPase) (438)

Mersalyl C13H16HgNO6.Na O-((3-Hydroxymercuri-2-
methoxypropyl)carbamoyl)phenoxy-acetic
acid; (3-((2-
(carboxymethoxy)benzoyl)amino)-
2-methoxypropyl)hydroxymercury;
mercuramide; mercusal; mersalyl acid

70% inhibition at 130 �M (bovine heart MF0,
proton conductivity) (445)

2,2	-Dithiobispyridine C10H8N2S2 2,2	-Dithiodipyridine; 2,2	-dipyridyl
disulfide; 2PDS; bis(2-pyridinyl) disulfide

55% inhibition at 1 mM (bovine heart MF0,
proton conductivity) (445)

N-(7-Dimethylamino-4-
methyl-coumarinyl)-
maleimide

C16H14N2O4 N-(4-Methyl-7-dimethylamino-3-
coumarinyl)maleimide

60% inhibition at 400 �M (bovine heart MF0,
proton conductivity) (445)

a Omeprazole is converted to a cyclic sulfenamide with acid-activation.

TABLE 22. His and other amino acid residue modifiers

Name Molecular formula Other names Inhibitory potency, I50 (reference)

Diethyl pyrocarbonate C6H10O5 Baycovin; diethyl dicarbonate; diethyl
oxydiformate; pyrocarbonic acid
diethyl ester

�50% inhibition at 3 mM (E. coli F0,
liposome proton uptake) (381)

Rose bengal C20H2Cl4I4Na2O5 Bengal rose 75–85% inhibition at 0.2 �M (bovine heart
F1-ATPase) (139)

Iodine I2 40 �M (rat liver MF1-ATPase) (314)
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affected by modification with diethyl pyrocarbonate (203). Di-
ethyl pyrocarbonate also modifies F0 from E. coli, inducing
inhibition of proton uptake (381).

Rose bengal photooxidizes His residues of � subunits, caus-
ing conformational instability in F1 (139). About 60% of the
His residues are photooxidized, causing 50% inactivation. This
photochemical damage is prevented by various phenanthroline
compounds.

Others

Iodine is an electron-dense heavy atom that reacts with and
inactivates F1 (314). It behaves like a typical covalent inhibitor
in its modification of amino acid residues. MgATP, MgADP,
and phosphate fail to protect F1 from inhibition by iodine.
Iodine preferentially labels the ATP synthase � subunit, al-
though it also labels � and � subunits to some extent. About 10
atoms of iodine are incorporated per F1 (rat liver mitochon-
dria) under conditions where the labeling proceeds in a linear
fashion. About two atoms of iodine are incorporated per �
subunit.

PHYSICAL INHIBITORY FACTORS

High Hydrostatic Pressure

High hydrostatic pressure of above 60 to 80 MPa inactivates
both F1 and the complete ATP synthase (F0F1) (Table 23)
(105, 310, 377). At below 60 to 80 MPa, the hydrostatic pres-
sure shows stimulatory effects on ATPase activity. However,
both membrane-bound and isolated F0F1 from mitochondria
are inhibited reversibly at high hydrostatic pressure, while sol-
uble F1-ATPase is inactivated irreversibly due to reassociation
with an altered hydrodynamic radius after decompression
(105). In contrast to the case for the isolated mitochondrial
ATP synthase, the inhibition of the isolated ATP synthase
from chloroplasts is irreversible, showing no restoration after
decompression (377). The inactivation is dependent on protein
concentration (377). Inhibition by high hydrostatic pressure
is believed to be associated with dissociation that impairs
contacts essential for transmission of conformational infor-
mation between those subunits needed for rotational catal-
ysis (105, 377).

UV Irradiation

Mitochondrial ATPase activity is inhibited also by far-UV
irradiation. UV light at 254 nm results in a time-dependent
inhibition of both membrane-bound and soluble F1. Inhibition
reaches its maximum level within 15 min after exposure of
SMP to UV (75). This also induces the release of tightly bound
adenine nucleotides from F1. Succinate, a substrate for the
electron transport chain, partially protects against the detri-
mental effects of UV. Inhibition by UV is due to the photo-
chemical modification of the essential Tyr residue located at
the active site of F1 that induces subsequent structural changes
in F1.

Low Temperature

The F1“catalytic” moiety of the ATP synthase (F0F1) is cold
labile (308, 309, 324). Its ATPase activity decrease rapidly
upon incubation at low temperature. The rate of inactivation is
first order, and the half-life varies between 15 and 60 min with
different preparations (324). The inactivation is not protected
by ATP, ADP, or Mg2� and is reversed by rewarming the
enzyme solution under appropriate conditions (309). The in-
activation by cold temperature is associated with the dissocia-
tion of the enzyme complex into subunits (309).

MISCELLANEOUS INHIBITORS

Polyborates are boron cluster compounds with a unique
molecular structure and unusual chemical properties. Among
the polyborates, dodecaborates ([B12H12]2�) and dicarbonon-
aborates ([C2B9H11]�) inhibit ATPase activity of MF1, and
dicarbononaborates have much stronger inhibitory potencies
than dodecaborates (Fig. 11) (104). One of the dicarbonon-
aborates, dichlorodicarbononaborate ([Cl2C2B9H10]�), that
contains two chlorides inhibits competitively with respect to
ATP the ATPase activities of both membrane-bound and sol-
uble F1. The inhibition is due to a direct interaction of the
reagent with the catalytic F1 moiety (104).

Almitrine is a piperazine-like agent that is known to be a
respiratory stimulant that enhances respiration by acting as an
agonist of peripheral chemoreceptors located on the carotid
bodies. This agent inhibits mitochondrial ATP synthase in an
uncompetitive manner (336). Also, it does not destroy the
electrochemical proton gradient across the mitochondrial
membrane that normally drives ATP synthesis (333–335).
Thus, mitochondria treated with this agent remain intact de-
spite the fact that this agent has debilitated their ATP synthase.

5-Hydroxynaphthalenedicarboxylic anhydride (HNA) inhib-
its the mitochondrial ATPase activity induced by 2,4-dinitro-
phenol and the ATPase activity of SMP induced by Mg2�

(165). HNA also inhibits the ATP-energized mitochondrial
volume change. The inhibitory effects of HNA are similar to
those of rutamycin.

R207910 is a diarylquinoline drug that has antimycobacterial
activity. It inhibits mycobacterial ATP synthase and targets
subunit c in F0 (15, 215, 313). The site of action of R207910
seems to be located close to an essential carboxyl residue,
Asp61 of subunit c (E. coli sequence), as the mutations
Asp32Val (Mycobacterium smegmatis) and Ala63Pro (M. tuber-

TABLE 23. Physical inhibitory factors

Factor Inhibitory potency (reference)

Hydrostatic pressure.........................850 barsa (bovine heart SMP-
ATPase, 0.02 mg/ml) (105)

Far-UV irradiation ...........................�80% inhibition within 15 min at
254 nm (bovine heart SMP-
ATPase) (75)

Cold temp..........................................15–60 minb at 4°C (324), 4–40
mina at 0°C with different
prepn (bovine heart MF1-
ATPase) (308, 309)

a I50.
b Half-life.
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culosis) confer resistance to the drug. Also, the mycobacterial
species naturally resistant to R207910 contains Met at position
63 in place of a conserved Ala in all sensitive mycobacteria (15,
181, 313). R207910 is an enantiomeric compound with two
chiral centers. It adopts the lowest-energy conformation with
the carbon alpha relative to the quinoline moiety R and the
carbon beta S (135). The binding of the inhibitor to the binding
site in ATP synthase is stereoselective, and its (S,R) stereoiso-
mer is 2 orders of magnitude less inhibitory than R207910
(215). R207910 appears to act specifically on mycobacteria,
and the range of MICs of R207910 is 0.03 to 0.12 �g/ml for
99% inhibition of the growth of M. tuberculosis strains (15).
The killing effect of M. tuberculosis by R207910 is time depen-
dent rather than concentration dependent (15), and R207910
acts synergically when combined with other tuberculous drugs
(183, 237, 238).

Spegazzinine is a dihydroindole alkaloid from Aspidosperma
chakensis Spegazzini (103). It inhibits uncompetitively the
ATPase activities of both membrane-bound and isolated CF1

from spinach (10). Spegazzinine inhibits both cyclic and non-
cyclic photophosphorylation of isolated spinach chloroplasts. It
also inhibits the mitochondrial ATPase activity of S. pombe
(234) and slightly inhibits the mitochondrial ATPase activity of
Tetrahymena pyriformis ST (404). In contrast, spegazzinine has
no inhibitory effects on the ATPase activities of ATP synthases
from Clostridium pasteurianum (78), Tritrichomonas foetus
(235), and mitochondria of Crithidia fasciculata (439).

n-Butanol inhibits the ATPase activities of both membrane-
bound and soluble MF1 (406). It inhibits the isolated F1 at the
same or lower concentrations as it inhibits membrane-bound
F1. Inhibition is temperature dependent. N-Butanol also shows
partial inhibition of ATP synthesis.

Tetrachlorosalicylanilide is a lipophilic weak acid known as
an H� conductor. It inhibits the ATPase activities of both
isolated F1 and F0F1 from Vibrio parahaemolyticus (290, 344).
The concentration of tetrachlorosalicylanilide for 50% inhibi-
tion of F0F1-ATPase activity from V. parahaemolyticus is about
9 to 10 �M (290).

Dihydrostreptomycin is a polycationic aminoglycoside anti-
biotic drug produced from Streptomyces humidus. It signifi-
cantly stimulates the ATPase activity of membrane-bound
ATP synthase from bovine heart mitochondria in the concen-
tration range of 1 to 5 mM. The stimulation is followed by
inhibition at higher concentrations (161). Dihydrostreptomy-
cin also inhibits the ATPase activity of isolated F1, but the
stimulation of the ATPase activity observed in the inhibition of
membrane-bound F1 at low concentrations of dihydrostrepto-
mycin is not observed in the inhibition of isolated F1. The
inhibition of ATPase activity of F1 by dihydrostreptomycin is
noncompetitive. Dihydrostreptomycin also exhibits partial in-
hibition of proton conductivity of F0 in the ATP synthase
devoid of its catalytic F1 moiety.

Suramin, a synthetic antiparasitic drug, is an inhibitor of
various proteins in different cell types and also inhibits the

FIG. 11. Miscellaneous inhibitors. TCS, tetrachlorosalicylanilide.
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binding of some growth factors to their receptors. Suramin also
binds to ATP synthase and inhibits both F1-ATPase and mem-
brane-bound F0F1-ATPase from mitochondria (28, 173).
Suramin acts as a noncompetitive inhibitor of the membrane-
bound ATPase and as a strictly competitive inhibitor of puri-
fied F1-ATPase (173). Half-maximal inhibition of rat liver F1-
ATPase occurs at 40 �M suramin.

Bz-423 is an 1,4-benzodiazepine derivative known as a cyto-
toxic immunomodulatory drug that suppresses disease in lu-
pus-prone mice by inducing apoptosis in autoreactive B and T
lymphocytes (193). Bz-423 binds to the OSCP subunit of ATP
synthase and inhibits both synthetic and hydrolytic activities of
the enzyme. The inhibition of the ATPase activity of ATP
synthase by Bz-423 leads to rapid generation of superoxide
(O2

�) from the respiratory chain within mitochondria and the
initiation of apoptosis by the reactive oxygen species. Bz-423
affects both the Vmax and Km of the ATPase activity of ATP
synthase and inhibits ATP synthesis in a concentration-depen-
dent fashion.

Dimethyl sulfoxide (DMSO) inhibits the hydrolytic activities
of BF1 and MF1 strongly at concentrations of above 30 to 40%
(9, 345, 440). Inhibition by DMSO is reversible, affecting Vmax

without a significant change in the Km (9, 440). In contrast, the
synthesis of ATP by soluble F1 is promoted in the presence of
DMSO (94, 197, 346). The effect of DMSO on the promotion
of ATP synthesis by isolated F1 is considered to be due to an
increase in affinity of F1 for phosphate at the catalytic site (197,
345).

Hypochlorous acid (HOCl) is a strong oxidant that is pro-
duced as a microbicide in activated neutrophils and monocytes
by myeloperoxidase-catalyzed peroxidation of chloride ion
(182). HOCl inhibits the ATPase activity of F1 in a biphasic
fashion. The ATPase activity falls rapidly to 20 to 30% at low
concentrations of HOCl and then slowly to zero at high con-
centrations (29). The biphasic mode of inhibition is attributed
to two different inhibitory activities of HOCl: oxidative modi-
fication of intact F1 and subunit dissociation of F1 due to more
extensive oxidation (29, 167). The target sites for HOCl are
believed to be amino acid residues within nucleophilic side
chains (167).

4,4	-Dichlorodiphenyltrichloroethane (DDT) is a synthetic
organic insecticide and affects sodium ion channels in the neu-
rons of DDT-sensitive insects, causing repetitive discharge by
the increase and prolongation of membrane’s negative after-
potential, leading to spasms and eventual death. DDT binds to
an unidentified 23-kDa protein in the F0 of mitochondrial ATP
synthase and inhibits the ATPase activity of the enzyme (442,
443). The 23-kDa protein is present in DDT-sensitive insects
but not in DDT-tolerant insects and mammals, and the pre-
pared DDT-sensitive ATP synthase devoid of the 23-kDa pro-
tein is not inhibited by DDT (442, 443).

Diazoxide, a mitochondrial potassium channel activator, is a
cardioprotective drug for short-term treatment of malignant
hypertension. Diazoxide also binds to MF1 and potentiates the
binding of IF1 to F1, inhibiting the ATPase activity of ATP
synthase (79, 80). The inhibition by diazoxide is reversible, and
the binding of one equivalent of diazoxide to F1 is sufficient to
inhibit the F1-ATPase activity. The inhibitory effect of diazox-
ide is ATP dependent, and no inhibition is observed without

Mg2�-ATP. The binding site of diazoxide is believed to be
located within the nucleotide binding domain of the � subunit.

2-Hydroxy-5-nitrobenzyl bromide (HNB) stimulates the hy-
drolytic activity of F1 from bovine heart mitochondria at below
0.5 mM but exhibits a concentration-dependent inhibition of
F1 from the same source at above 0.5 mM (26, 27). HNB is a
Trp-modifying reagent. Its capacity to activate catalytic activity
at below 0.5 mM is attributed to its covalent interaction with a
single Trp residue in the ε subunit of F1 (26). In contrast,
HNB’s inhibitory effect at above 0.5 mM appears to be due to
noncovalent, reversible, aspecific binding to F1. About 50% of
the hydrolytic activity is inhibited at 2.5 mM.

A series of derivatives of benzodiazepine, 4-(N-arylimida-
zole)-substituted benzopyran, and N-[1-aryl-2-(1-imidazolo)
ethyl]-guanidine have been synthesized and tested for the
treatment of ischemic heart disease as cardioprotective agents
(Table 24) (20, 21, 166). During ischemia, ATP is hydrolyzed
by mitochondrial ATP synthase, leading to depletion of ATP.
To prevent the ATP wastage in ischemia, the ATPase activity
of ATP synthase should be inhibited selectively without affect-
ing the ATP synthesis activity of the enzyme. Several inhibitors
were proposed as potential compounds for drug design for
ischemia.

N-Sulfonyl- or N-alkyl-substituted tetrahydrobenzodiaz-
epine derivatives inhibit the mitochondrial ATPase activity of
ATP synthase (166). The inhibition of ATP synthesis by these
derivatives is much less potent than their inhibition of ATP
hydrolysis. The derivatives with an N-sulfonyl moiety seem to
have stronger inhibitory potencies than those with an N-alkyl
moiety.

4-(N-Arylimidazole)-substituted benzopyran derivatives are
inhibitors of ATP hydrolysis of mitochondrial ATP synthase
(21, 156). The inhibition of ATP synthesis by these derivatives
is about an order of magnitude less potent than that of ATP
hydrolysis (21). Both the N-arylimidazole ring and benzopyran
seem to be required for inhibition, since the removal of either
from the structure causes a dramatic loss of inhibitory potency.
BMS-199264 has been tested as a cardioprotective agent in
ischemic rat hearts and showed selective inhibition of ATP
hydrolase activity with no effect on ATP synthesis (156). It
conserved ATP during ischemia, while it had no influence on
preischemic ATP concentrations and cardiac function.

Cyano- and acylguanidine derivatives containing imidazolo-
ethyl and aryl groups also inhibit the hydrolytic activity of
mitochondrial ATP synthase (20). Inhibition by derivatives of
N-[1-aryl-2-(1-imidazolo)ethyl]-cyanoguanidine and N-[1-aryl-
2-(1-imidazolo)ethyl]-acylguanidine is selective for ATPase ac-
tivity. No inhibition of ATP synthesis is observed up to 100
�M. In cyanoguanidine derivatives, the number and position
of the chloride in aryl groups are believed to be important
for their inhibitory activities. For example, the 2,4-dichloro
analog is more potent than 2,3-dichloro and monochloro
analogs in inhibiting the ATPase activity of F1. Two sym-
metrical enantiomers with an identical chemical composi-
tion also have different inhibitory potencies. For instance,
one entiomer of N-[(Z)-[(4-chlorophenyl)amino]{[1-(2,4-
dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl]amino}methylidene]-
3-cyanobenzamide inhibits the ATPase activity of bovine mito-
chondrial ATP synthase (F0F1) with an I50 of 18 nM, whereas
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TABLE 24. Miscellaneous inhibitors

Name or abbreviation Molecular formula Other names Inhibitory potency (reference)

Dicarbopolyborate C2B9H11 (Dicarbononaborate) Mercapto and chloro derivatives
of dicarbononaborates, �95%
inhibition at 500–800 �M (rat
liver MF1-ATPase) (104);
dichlorodicarbononaborate,
170 �Mb (rat liver MF1-
ATPase) (104)

Almitrine C26H29F2N7 6-(4-(Bis(4-fluorphenyl)methyl)-1-piperazinyl)-
N,N	-di-2-propenyl-1,3,5-triazin-2,4-diamin;
2,4-bis(allylamino)-6-(4-(bis(p-
fluorophenyl)methyl)-1-piperazinyl)-
s-triazine

30 �Ma (S. cerevisiae
mitochondria, ATPase) (336)

5-Hydroxy-1,2-naphthalene
dicarboxylic anhydride

C12H6O4 6-Hydroxynaphtho(1,2-c)furan-1,3-dione; 5-
hydroxynaphthalenedicarboxylic anhydride

Complete inhibition of ATPase
induced by gramicidin at 30
�M (rat liver SMP-ATPase)
(165)

R207910 C32H31BrN2O2 1-(6-Bromo-2-methoxy-quinolin-3-yl)-4-
dimethylamino-2-naphthalen-1-yl-1-phenyl-
butan-2-ol; TMC207; compound J

2.5 nMa (M. smegmatis
membrane vesicles, ATP
synthesis) (215); 99%
inhibition in the range of
0.03–0.12 �g/ml (M.
tuberculosis, growth) (15)

Spegazzinine C21H28N2O3 18.5–24 �g inhibitor/mg proteina

(S. pombe ATPase activity of
cell extracts) (234); 100 �Ma

(spinach CF1-ATPase) (10);
80 �Ma (spinach chloroplasts,
photophosphorylation) (10)

n-Butanol C4H10O 1-Butanol; propyl carbinol; n-butyl alcohol;
1-hydroxybutane; butyl hydroxide;
Hemostyp; methylolpropane;
propylcarbinol; propylmethanol

160 mMa (bovine heart MF1-
ATPase) (406)

TCS C13H7Cl4NO2 TCSA; tetrachlorosalicylanilide;
3,3	,4	,5-tetrachlorosalicylanilide; 3,5-
dichlorosalicyl 3,4-dichloroanilide; 3,5-
dichloro-N-(3,4-dichlorophenyl)-2-hydroxy-
benzamide

9–10 �Ma (F0F1-ATPase from
V. parahaemolyticus) (290);
71% inhibition at 25 �M (V.
parahaemolyticus F1-ATPase)
(344)

Dihydrostreptomycin C21H41N7O12 Abiocine; Vibriomycin 38 mMb (bovine heart SMP-
and isolated MF1-ATPase)
(161)

Suramin C51H40N6O23S6 Belganyl; Naganol 40 �Ma (rat liver MF1-ATPase)
(28); 0.7 �g/mla (C.
fasciculata MF1-ATPase)
(173)

Bz-423 C27H21ClN2O2 Bz-48 5 �Ma (Ramos cells, ATP
synthesis) (193)

DMSO C2H6OS Dimethyl sulfoxide � 95% inhibition at 40%
DMSO (vol/vol) (EF1-
ATPase) (9); �60%
inhibition at 50% DMSO
(TF1-ATPase) (440)

Hypochlorous acid HOCl 75% inhibition at 125 �M
HOCl/g cells (EF1-ATPase)
(167); 50 �mol inhibitor/g
cellsa (EF1-ATPase) (29)

DDT C14H9Cl5 4, 4	-Dichlorodiphenyltri-chloroethane; 4, 4	-
DDT; p,p	-DDT; 1,1	-(2,2,2-
trichloroethylidene)bis
(4-chlorobenzene); Agritan;
Chlorophenothan; 1,1,1-trichloro-2,2-
bis(4,4	-dichlorodiphenyl)
ethane; Detoxan

50% lethal dose of 11 �g/mg
(A. melllifera)

Diazoxide C8H7ClN2O2S 7-Chloro-3-methyl-2H-1,2,4-benzothiadiazine
1,1-dioxide; Eudemine; Hyperstat;
Hypertonalum

Kd of IF1 to F1, 250 nM with 1
diazoxide equivalent/F1 from
760 nM without diazoxide
(bovine MF1-ATPase) (80)

Continued on following page
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TABLE 24—Continued

Name or abbreviation Molecular formula Other names Inhibitory potency (reference)

HNB C7H6BrNO3 2-Hydroxy-5-nitrobenzyl bromide; Koshland’s
reagent I; 2-bromomethyl-4-nitrophenol;
�-bromo-4-nitro-o-cresol

2.5 mMa (bovine heart MF1-
ATPase) (27)

N-Sulfonyl or N-alkyl-
substituted
tetrahydrobenzodiazepine
derivatives

C28H30N4O3S 1-(1H-Imidazol-4-ylmethyl)-4-�(4-
methoxyphenyl)sulfonyl-2-(2-phenylethyl)-
2,3,4,5-tetrahydro-1H-1,4-benzodiazepine

77 nMa (bovine heart MF0F1-
ATPase) (166)

C22H23F3N4O2S 1-(1H-Imidazol-4-ylmethyl)-2-(2-phenylethyl)-
4-�(trifluoromethyl)sulfonyl-2,3,4,5-
tetrahydro-1H-1,4-benzodiazepine

77 nMa (bovine heart MF0F1-
ATPase) (166)

C31H36N4O2S 4-�(4-tert-Butylphenyl)sulfonyl-1-(1H-
imidazol-4-ylmethyl)-2-(2-phenylethyl)-
2,3,4,5-tetrahydro-1H-1,4-benzodiazepine

8 nMa (bovine heart MF0F1-
ATPase) (166)

C32H38N4O2S 4-�(4-tert-Butylphenyl)sulfonyl-1-�(5-methyl-
1H-imidazol-4-yl)methyl-2-(2-phenylethyl)-
2,3,4,5-tetrahydro-1H-1,4-benzodiazepine

77 nMa (bovine heart MF0F1-
ATPase) (166)

C28H28Cl2N4O2S 4-�(3,4-Dichlorophenyl)sulfonyl-1-�(5-methyl-
1H-imidazol-4-yl)methyl-2-(2-phenylethyl)-
2,3,4,5-tetrahydro-1H-1,4-benzodiazepine

22 nMa (bovine heart MF0F1-
ATPase) (166)

4-(N-Arylimidazole)-
substituted benzopyran
derivatives

C22H21ClN4O2 4-�(4-Chlorophenyl)(1H-imidazol-2-
ylmethyl)amino-3-hydroxy-2,2-dimethyl-3,4-
dihydro-2H-chromene-6-carbonitrile

3R, 4S enantiomer, 0.48 �Ma

(rat heart MF0F1-ATPase)
(21) and 4 �Ma (rat heart
SMP-ATP synthesis) (21); 3S,
4R enantiomer, 0.24 �Ma (rat
heart SMP-ATPase) (21) and
3.8 �Ma (rat heart SMP-ATP
synthesis) (21);

C26H31ClN4O4S 4-�(4-Chlorophenyl)(1H-imidazol-2-
ylmethyl)amino-2,2-dimethyl-6-(piperidin-1-
ylsulfonyl)-3,4-dihydro-2H-chromen-3-ol

3R, 4S enantiomer (BMS-
199264), 0.48 �Ma (rat heart
SMP-ATPase) (21), 18 �Ma

(rat heart SMP-ATP
synthesis) (21); �42%
inhibition at 3 �M (ischemic
rat heart SMP-ATPase) (156)

N-�1-Aryl-2-(1-
imidazolo)ethyl-
cyanoguanidine

C19H14Cl4N6 2-Cyano-1-(2,4-dichlorophenyl)-3-�1-(2,4-
dichlorophenyl)-2-(1H-imidazol-1-
yl)ethylguanidine

0.6 �Ma (bovine MF0F1-
ATPase) (20)

derivatives C21H14Cl2F6N6 1-{1-�2,5-Bis(trifluoromethyl)phenyl-2-(1H-
imidazol-1-yl)ethyl}-2-cyano-3-(2,4-
dichlorophenyl)guanidine

0.71 �Ma (bovine MF0F1-
ATPase) (20)

N-�1-Aryl-2-(1-
imidazolo)ethyl-
acylguanidine
derivatives

C26H19Cl3N6O N-�(Z)-�(4-Chlorophenyl)amino{�1-(2,4-
dichlorophenyl)-2-(1H-imidazol-1-
yl)ethylamino}methylidene-3-
cyanobenzamide

Racemic mixture, 33 nMa

(bovine MF0F1-ATPase) (20);
one enantiomer. 18 nMa

(bovine MF0F1-ATPase) (20);
the other enantiomer, �100
nMa (bovine MF0F1-ATPase)
(20)

C25H19Cl4N5O 4-Chloro-N-�(Z)-�(4-chlorophenyl)amino{�1-
(2,4-dichlorophenyl)-2-(1H-imidazol-1-
yl)ethylamino}methylidenebenzamide

Racemic mixture, 82 nMa

(bovine MF0F1-ATPase) (20)

O-�1-Aryl-2-(1-
imidazolo)ethyl-
thiourethane derivatives

C18H14Cl3N3OS O-�1-(2,4-Dichlorophenyl)-2-(1H-imidazol-1-
yl)ethyl (4-chlorophenyl)carbamothioate

0.43 �Ma (bovine heart MF0F1-
ATPase) (20); �300 �Ma

(bovine heart MF0F1, ATP
synthesis) (20)

C18H13Cl4N3OS O-�1-(2,4-Dichlorophenyl)-2-(1H-imidazol-1-
yl)ethyl (2,4-
dichlorophenyl)carbamothioate

30 nMa (bovine heart MF0F1-
ATPase) (20)

Dio-9 complex Unknown (a mixture of at
least 9 compounds)

0.7 �g inhibitor/mg proteina (T.
pyriformis SMP-ATPase)
(404); �500 �g inhibitor/mg
proteina (S. faecalis F1-
ATPase) (169); 6.6 �g/mg
proteina (C. fasciculata SMP-
ATPase) (439)

Ethanol C2H5OH Ethyl alcohol 60% inhibition at about 7 �M
(V. parahaemolyticus F0F1-
ATPase) (290)

Zinc Zn2� �100 �Ma (V. parahaemolyticus
F0F1-ATPase) (290)

a I50.
b Ki.
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the other entiomer has no inhibitory activity on the ATPase
activity of the same enzyme (20).

O-[1-Aryl-2-(1-imidazolo)ethyl]-thiourethane derivatives
also inhibit the ATPase activity of mitochondrial ATP syn-
thase. Similar to the derivatives of N-[1-aryl-2-(1-imidazolo)
ethyl]-cyanoguanidine and N-[1-aryl-2-(1-imidazolo)ethyl]-
acylguanidine, the O-[1-aryl-2-(1-imidazolo)ethyl]-thiourethane de-
rivatives also maintain selectivity for inhibition of ATPase ac-
tivity of ATP synthase over ATP synthesis. For example,
substitutions in the 1-aryl-2-imidazoloethyl and aniline moi-
eties affect the inhibitory potencies of the derivatives, and
halogen substitution in these moieties also seems to be favor-
able for promoting inhibition.

Dio-9 is a mixture of at least nine compounds, two of which
have antibiotic properties (232). Dio-9 inhibits both ATPase
and ATP synthase activities of mitochondria, chloroplasts, and
bacteria (124, 125, 163, 169, 431). There is still much to be
learned about the structures and chemical actions of the class
of compounds comprising Dio-9.

Ethanol inhibits the ATPase activity of F0F1 from V. para-
haemolyticus at concentrations of above 4% (290). In con-
trast, ethanol exhibits stimulatory effects on the ATPase
activity of F1.

Zinc strongly inhibits the ATPase activities of both purified
and membrane-bound F0F1 from V. parahaemolyticus (267,
290). The site of action of the zinc ion is considered to be
located within F0 (290).

CONCLUSIONS

ATP synthase was previously considered to be located only
in the mitochondrial inner membrane, the bacterial plasma
membrane, and the chloroplast thylakoid membrane. It was
also considered to be involved only in the synthesis of ATP or
in the generation of a proton gradient. Now, however, signif-
icant evidence has accumulated that the ATP synthase is also
present on the surfaces of multiple animal cell types and serves
as a receptor for various ligands, participating in a number of
cellular processes, including angiogenesis, lipid metabolism,
the regulation of intercellular pH, and the cytolytic pathway of
tumor cells (17, 38, 39, 72, 91, 202, 269). As the multiple roles
of the cell surface ATP synthase are now beginning to be
understood, this pivotal enzyme complex both at this location
and its mitochondrial location is emerging as a molecular tar-
get for the treatment of various diseases.

The use of ATP synthase as a molecular target has multiple
advantages. First, as it is indispensable for energy metabolism,
if selectively targeted, it may be possible to eradicate some
types of cancer. It may also provide an ideal target for con-
trolling a number of other diseases because of its complex
subunit composition. For example, it has been demonstrated
already that a lupus drug, Bz-423, targets the OSCP of F0,
whereas an antimycobacterial drug, R207910, binds to subunit
c of F0 (15, 193, 313). In addition, it has been shown that
resveratrol and piceatannol, potential antiangiogenesis agents,
block tumor growth by binding to the � subunit of F1 (143,
449). Lastly, the high inhibitory specificity of ATP synthase
inhibitors also suggests that this complex is an excellent target
for the development of new insecticidal or herbicidal agents.
For example, tentoxin is a strong inhibitor of CF1-ATPase

from certain sensitive species such as spinach, potato, and
lettuce, but it has little or no inhibitory effect on the same
enzyme from insensitive species such as corn, tobacco, and
radish, even though they exhibit high sequence and structural
similarity (380). In addition, slight structural modifications of
tentoxin can cause dramatic effects on the properties and in-
hibitory potencies of the inhibitor (316, 351). Finally, the drug
R207910, developed for the treatment of tuberculosis, also
shows a narrow selectivity in its inhibition of the ATP synthase
in mycobacterial species (15).

The mitochondrial ATP synthase contains a number of su-
pernumerary subunits that are absent in bacterial or chloro-
plast counterparts. The plasma membrane ATP synthase
found in various types of animal cells also includes more sub-
unit types than the bacterial and chloroplast ATP synthases.
The roles of the supernumerary subunits are currently un-
known or poorly defined, but evidence is accumulating that
these “extra” subunits are also involved in cellular processes
other than ATP synthesis. Thus, subunit F6 has been reported
to be associated with regulating blood pressure. Additionally,
subunit e has been reported to be involved in the regulation of
the expression of the gene for subunit g of the ATP synthase
(18) and also for that of the c-myc proto-oncogene (177, 226).
The expression level of subunit e has also been shown to be
highly sensitive to diverse physiologic changes and stresses.
Although the detailed regulatory roles of subunits F6 and e and
the roles of other supernumerary subunits require further in-
vestigation, it seems likely that they will be implicated in a
multitude of cellular processes that will result in future use of
the ATP synthase as a drug target.

In this review, we have provided detailed information about
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FIG. 12. Inhibitory sites of ATP synthase. The inhibitor binding
sites in the ATP synthase as revealed by biochemical/structural studies
are indicated by red circles, and the binding subunits in which the
binding sites have not been completely clarified are indicated by green
circles. The coordinates of each subunit in the structural model are the
same as in Fig. 1.
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most natural and synthetic inhibitors of ATP synthases re-
ported to date. Figure 12 summarizes the known or proposed
sites of these ATP synthase inhibitors. About 270 inhibitors are
described here and need further investigations to identify
clearly or confirm their sites of actions and inhibitory mecha-
nisms. When this mammoth task is accomplished, it will further
heighten consideration of ATP synthase as a major target for
new therapies for human and animal diseases and likely con-
tribute also to the discovery of novel agents that may prove
valuable in agriculture and other areas. In addition, the rich
source of structures and other knowledge about ATP synthase
inhibitors already provided in this review will likely prove in-
valuable as scaffolds for new drug discoveries in the near
future.
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